Errata

Title & Document Type: 4262A LCR Meter Operating and Service Manual (Jul78)

Manual Part Number: 04262-90052

Revision Date: July 1978

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

OPERATING AND SERVICE MANUAL

MODEL 4262A LCR METER

(including Options 001, 004, 010, and 101)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1739J

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MAN-UAL in Section I.

COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1977 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

Manual Part No. 04262-90002 Microfiche Part No. 04262-90052

Printed : Jul. 1978

Table of Contents

ŗ

TABLE OF CONTENTS

Section	Title	Page
I GENE 1-1. 1-4. 1-8. 1-10. 1-13. 1-18. 1-20. 1-22. 1-24. 1-26. 1-28. 1-31. 1-33.	CRAL INFORMATION. Introduction Description Specifications Safety Considerations Instruments Covered by Manual Options Option 001 Option 004 Option 101 Option 010 Option 010 Option 200 Cher Options Accessories Supplied Equipment Available	1-1 1-1 1-1 1-7 1-7 1-8
II INST. 2-1. 2-3. 2-5. 2-6. 2-8. 2-10. 2-14. 2-16. 2-19. 2-21. 2-23. 2-24. 2-26. 2-29. 2-31. 2-32. 2-34.	Interconnections Operating Environment Installation Instructions Installation of Options 907, 908 and 909 Storage and Shipment Packaging Option Installation Option 001 BCD Data Output Installation Option 004 Comparator Installation Coupling Option 004 Comparator with Option 001 BCD Data Output Installation	2-6 ol
III OPEJ 3-1. 3-3. 3-5. 3-7. 3-9. 3-11. 3-13. 3-15. 3-17. 3-19. 3-21. 3-23. 3-25. 3-28.	RATION . Introduction . Panel Features . Self Test (Basic Operating Check) . Test Signals . Measurement Range . Initial Display Test . Initial Control Settings . D/Q Measurement . LCR Measurement . D/Q Blanking Function (Switch selectable function inside cabinet) . General Component Measurement . Semiconductor Device Measurement . External DC Bias .	3-1 3-1 3-1 3-6 3-6 3-7 3-7 3-7 3-7 3-7 3-7 3-9 3-9 3-9 3-9 3-9 3-9 3-9

Secti	ion	Title	Page
	3-30.	Terminal Configuration	3-10
	3-32.	Offset Adjustment	3-10
	3-40.	Option Operation	3-27
	3-40. 3-42.	Option 001: BCD Parallel Data	
		Output	3-27
	3-44.	Output Data and Pin Assignment	3-27
	3-46.	Alternate Output of LCR and	
		D/Q Data	3-27
	3-47.	Output Timing	3-27
	3-49.	Option 004-COMPARATOR	3-30
	3-51.	Front Panel Features	
		(Figure 3-42)	3-30
	3-52.	LIMIT Setting Warning	3-31
	3-53.	OUTPUT Connector Decision	
		Output	3-31
	3-60.	Option 101: HP-IB	3-32
	3-62.	Connection to HP-IB Controller	3-32
	3-63.	HP-IB Status Indicator	3-32
	3-64.	LOCAL Switch	3-32
	3-65.	HP-IB Interface Capabilities	3-32
	3-66.	Source and Acceptor	
		Handshake: SH1, AH1	3-32
	3-67.	Talker Capability: T5	3-32
	3-68.	Functions Related to	
		Talker Capability	3-33
	3-69.	Listener Capability: L4.	3-33
	3-70.	Service Request	
		Capability: SR1	3-33
	3-71.	Remote/Local	3-36
		Capability: RL1	3-30
	3-72.	Device Clear	3-36
	0 70	Capability: DC1	5-50
	3-73.	Device Trigger Capability: DT1	3-36
	0 74	ADDRESS Switch	3-36
	3-74.	Remote Message Coding	
	3-75.	Remote Message Coung	0-00
IV	PERF	ORMANCE TEST	. 4-1
	4-1.	Introduction	. 4-1
	4-3.	Equipment Required	. 4-1
	4-5.	Test Record	. 4-1
	4-7.	Calibration Cycle	
	<u></u>	Preliminary Operations	
		Calibration of DUT's	
	4-9.	Measurement Frequency Test	
	4-10.	Capacitance Accuracy Test	
	4-11.	Resistance/ESR Accuracy Test	
	4-12.	Dissipation Factor Accuracy Test .	
	4-13.	Inductance Accuracy Test	
	4-14.	Internal DC Bias Source Test	
	4-15.	Offset Adjustment Test	4-20
	4-16.	Comparator Test (Option 004 Only)	4-44
	4-17.	HP-IB Interface Test (Option 101 Only)	4-25
		(Obrion row Our)	

-.

TABLE OF CONTENTS

Section

Section	Title	Page
V ADJ 5-1. 5-3. 5-7. 5-9. 5-12 5-14 5-16 5-18 5-20 5-21	Safety Requirements Equipment Required Factory Selected Components Adjustment Relationships DUT Adjustment Recommendations . Initial Operating Procedure DC Power Supply Adjustment Nanoprocessor Operating Power	$\begin{array}{c} 5-1 \\ 5-1 \\ 5-1 \\ 5-1 \\ 5-1 \\ 5-1 \\ 5-4 \\ 5-5 \\ 5-6 \\ \end{array}$
5-22	Voltage Adjustment Al2 Board Offset Adjustment	5-7
5-23	A13 Board Offset Adjustment.	5-8
5-24.	• A14 Phase Detector & Integrator	
5-25.	10kHz Measurement Accuracy	5-14
5-26.	(A12)	5-17 5-22
VI REPI	ACEABLE PARTS	6-1
6-1.	Introduction	0-1 6-1
6-3.	Abbreviations	6-1
6-5.	Replaceable Parts List	6-1
6-7.	Ordering information	6-2
6-10.	opare Parts Kit	6-2
6-12.		6-2
VII MANU	AL CHANGES	. 1
7-1.		7-1 7-1
7-3.		7-1 7-1
VIII SERVI	CE	8-1
8-1.	Introduction	B-1
8-3.	Theory of Operation	3-1
8-5.	Troubleshooting	3-1
8-7.	Recommended Test Equipment	2_1
8-9.	Repair	3-1

ection	Title Pa	age
8-11	Basia Theory	
		8-2
8-21	 Block Diagram Discussion 	3-4
8-22.	Analog Section Discussion	3-8
8-23.	• All Oscillator and	3-8
	Source Resistor	8-8
8-25.	• A12 Range Resistor o	-8
8-26.	A13 Process Amplifier 8	-8
8-27.	A14 Phase Detector and	Ŭ
8-28.	Integrator 8	-8
8-30.	Biguer Control Section	10
8-31.	1100 I TOCESSOF allu ROM 8-	10
8-32.	A21 Reyboard Control 8-	11
0-32.	A22 Display Control	
8-33.	& RAM 8-	11
8-34.	A2 Display and Keyboard 8.	11
•	Timing Diagram Discussion 8-2	12
8-37.	Options	14
8-39.	Option 001 BCD Data	
0 40	Output (A35) 8-1	4
8-40.	Option 004 Comparator	
0 41	(A4, A5 & A24) 8-1	5
8-41.	Option 101 HP-IB	
8-42.	Compatible (A25) 8-1	5
8-42. 8-46.	1 roubleshooting 8-1	6
8-40.	Repair.	6
8-48.	Removal of Q2 and Q3 8-2	6
	Line Switch (SI) Removal 8-2	6
8-49.	Protective Diode Replacement	
0 50	(CR4, CR5, CR6 and CR7) 8-2	7
8-50.	ZERO ADJ Control Potentiometer	
0 51	(R4 and R5) Replacement 8-2	7
8-51.	A2 Keyboard and Display	
0 59	Board Disassembly 8-22	7
8-52.	Reyboard Switch LED Replacement 8-20	
8-53.	Product Safety Checks)

Title

List of Tables List of Illustrations

LIST OF TABLES

Number	Title	Page	Number	Title	Page
1-1.	Specifications		5-3.	DUT's Recommended for	- 4
1-2.	General Information	1-6		Making Adjustments	
1-3.	Equipment Available	1-9	5-4.	Adjustment Requirements	5-5
1-4.	Recommended Test Equipment	1-10			
			6-1.	List of Reference Designators	
3-1.	Test Signal Level	3-6		and Abbreviations	
3-2.	Measurement Ranges		6-2.	Manufacturers Code List	6-2
3-3.	Annunciation Display Meanings		6-3.	Replaceable Parts	6-3
3-4.	Unusual Operating Indications				
3-60.	Remote Program Codes		7-1.	Manual Changes by Serial Number	7-1
3-61.	Remote Message Coding		7-2.	Summary of Changes by Assembly	7-1
4-1.	Recommended Components for		8-1.	Currently Available Options	. 8-14
	Accuracy Checks	4-6	8-2.	Symptoms Likely to Mislead	
			8-3.	Front Panel Symptoms of Internal	
5-1.	Adjustable Components	5-2		Control Misadjustment	. 8-19
5-2.	Factory Selected Components		8-4.	Front Panel Isolation Procedure .	

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
1-1.	Model 4262A and Accessories	1-1	4-4.	Dissipation Factor Accuracy Test	
1-2.	Serial Number Plate			Setups	.4-14
			4-5.	Inductance Accuracy Test Setup	4-17
2-1.	Voltage and Fuse Selection	2-2	4-6.	Internal DC Bias Source	
2-2.	Power Cable			Test Setup	
2-3.	Rack Mount Kit	2-5	4-7.	Offset Adjustment Test Setup	4-20
2-4.	Option Installation Illustrations	2-7	4-8.	Comparator Test Setups	4-22
	•		4-9.	Comparator Output (J6) data format	4-24
3-1.	Front Panel Features	3-2	4-10.	HP-IB Interface Test Setup	4-25
3-2.	Rear Panel Features		4-11.	SRQ Service Routing	4-29
3-3.	Test Fixture and Leads				
3-4.	Measurement Error due to		5-1.	Power Supply Voltage Adjustment	. 5-6
	Misadjusted ZERO ADJ controls	3-10	5-2.	Nanoprocessor Operating Power	
3-5.	Conversion between Parallel and			Voltage Adjustment Location	. 5-7
	Series Equivalents	3-12	5-3.	A12 Board Offset Adjustment	. 5-8
3-6.	Relationship of Dissipation to		5-4.	Waveform at A12Q11 Source	. 5-9
	Series and Parallel Resistance	3-13	5-5.	A13 Board Offset Adjustment	
3-7.	General Component Measurements		5-6.	Waveform at A13TP1	
3-8.	Semiconductor Device Measurement		5-7.	Waveform at A13TP2	
3-9.	External DC Bias Circuits	3-20	5-8.	Waveform at A13TP3	5-12
3-40.	Pin Assignments of Output		5-9.	A14 Phase Detector & Integrator	
	Connector and Output Format	3-28		Adjustment	
3-41.	Timing Chart of BCD Data Output		5-10.	A22S1 Switch Setting	5-14
3-42.	Front Panel Features	3-30	5-11.		5-15
3-43.	Option 004: COMPARATOR	3-30	5-12.		
3-44.	Pin Location of Comparator			Adjustment	5-17
	Data Output	3-31	5-13.	Offset Adjustment Setup	5-22
4-1.	Measurement Frequency Test Setup.	4-7	6-1.	Major Mechanical Parts	
4-2.	Capacitance Accuracy Test Setup	4-8		- Exploded View	6-23
4-3.	Resistance Accuracy Test Setup		6-2.	Mechanical Parts	
				- Exploded View	6-25

i

)

• .

LIST OF ILLUSTRATIONS

Number

Page

Number

Page

8-1.	Basic Block Diagram 8-2
8-2.	Cp Measurement
8-3.	Measurement Principles. 8-7
8-4.	Offset Control Principle
8-5.	DC Bias Circuit
8-6.	Analog Section Block Diagram 8-9
8-7.	Digital Section Block Diagram 8-11
8-8.	Timing Diagram
8-9.	Option Section Block Diagram 8-15
8-10.	How to Use Troubleshooting Guides 8-17
8-11.	Self Test Function 8-21
8-12.	Signature Analysis Guide
8-13.	Protective Diode and ZERO ADJ
	Control Potentiometer
	Replacement 8-26
8-14.	A2 Keyboard and Display
	Board Disassembly
8-15.	Inserting Tubing into Switch Plunger 8-28
8-16.	LED Installation in Switch
8-17.	Analog and Digital Section
	Isolation Procedure
8-18.	Analog Section Troubleshooting
	Procedure to Assembly Level8-33
8-19.	Digital Section Troubleshooting
•	Procedures8-35
8-20.	Schematic Diagram Notes
8-21.	Assembly Locations
8-22.	Adjustment Locations
8-23.	Front Panel Component Locations
8-24.	Rear Panel Component Locations 8-44
8-25.	A2 Keyboard & Display Board
·	Assembly Component Locations8-45
8-26.	A2 Keyboard & Display Board
• •••	Assembly Schematic Diagram8-45
8-27.	A9 Power Supply Board
• =	Troubloshooting Trac
8-28.	Troubleshooting Tree
0 20.	Component Leastions
8-29.	Component Locations
0 40.	A9 Power Supply Board Assembly
8-30.	Schematic Diagram
0 00.	A11 OSC & Source Resistor Board
8-31.	Troubleshooting Tree
0-31.	All OSC & Source Resistor Board
8-32.	Assembly Component Locations8-49
0-32.	All OSC & Source Resistor Board
0 99	Assembly Schematic Diagram8-49
8-33.	A12 Range Resistor Board
0 94	Troubleshooting Tree
8-34.	A12 Range Resistor Board Assembly
0 9-	Component Locations
8-35.	A12 Range Resistor Board
0 90	Assembly Schematic Diagram8-51
8-36.	A13 Process Amplifier Board
	Troubleshooting Tree8-52

Title

umber	Title	Page
8-37	A13 Process Amplifier Board Assembly Component Locations	0 5 9
8-38.	A13 Process Amplifier Board	
8-39.		
8-40.	meet and Detector & mitegrator	
8-41.	Detector & Integrator	8-55
	Board Assembly Component Locations	8-57
8-42.	A14 Phase Detector & Integrator Board Assembly	
	Schematic Diagram	8-57
8-43.	A21 Keyboard Control Board	
8-44.	Assembly Component Locations. A21 Keyboard Control Board	
0.45	Assembly Schematic Diagram	8-59
8-45.	A22 Display Control & RAM Board	1
8-46.	Assembly Component Locations. A22 Display Control & RAM Board	8-61 I
	Assembly Schematic Diagram	
8-47.	A23 Processor & ROM Board	
8-48.	Assembly Component Locations. A23 Processor & ROM Board	8-63
0 10.	Assembly Schematic Diagram	0 63
8-49.	A4 Thumbwheel Switch Board	
	Assembly Component Locations.	8-65
8-50.	A5 Comparator Keyboard Board	
8-51.	Assembly Component Locations. A4 Thumbwheel Switch Board and	8-65
	A5 Comparator Keyboard Board	
	Assembly Schematic Diagram	8-65
8-52.	A24 Comparator Control Board	
8-53.	Diagnostic Flow Diagram A24 Comparator Control Board	8-66
0 00.	Assembly Component Locations.	8-67
8-54.	A24 Comparator Control Board	
	Assembly Schematic Diagram	.8-67
8-55.	A25 HP-IB Interface Board	
8-56.	Diagnostic Flow Diagram A25 HP-IB Interface Board	.8-68
0 00.	Assembly Component Locations	8-60
8-57.	A25 HP-IB Interface Board	
0 50	Assembly Schematic Diagram	.8-69
8-58.	A35 BCD Output Control Board	
8-59.	Diagnostic Flow Diagram A35 BCD Output Control Board	.8-70
	Assembly Component Locations	8_71
8-60.	A35 BCD Output Control Board	
	Assembly Schematic Diagram	. 8-71

Model 4262A

Section I Paragraphs 1-1 to 1-6

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This operating and service manual contains the information required to install, operate, test, adjust and service the Hewlett-Packard Model 4262A Digital LCR Meter. Figure 1-1 shows the instrument and supplied accessories. This section covers specifications, instrument identification, description, options, accessories, and other basic information.

1-3. Listed on the title page of this manual is a microfiche part number. This number can be used to order $4 \ge 6$ inch microfilm transparencies of the manual. Each microfiche contains up to 60 photoduplicates of the manual pages. The microfiche package also includes the latest manual changes supplement as well as all pertinent service notes. To order an additional manual, use the part number listed on the title page of this manual.

1-4. DESCRIPTION.

1-5. The HP Model 4262A LCR Meter is a general

purpose, fully automatic test instrument designed to measure the parameters of an impedance element with high accuracy and speed. The 4262A measures capacitance, inductance, resistance (equivalent series resistance) and dissipation factor or quality factor over a wide range at test frequencies of 120Hz, 1kHz and 10kHz employing a five-terminal connection configuration between the component and the instrument. The measuring circuit for the device to be measured is capable of both parallel and series equivalent circuit measurements and the measured values are displayed by the two three-full digits LED displays on the front panel. A convenient diagnostic function, also featured in the 4262A, is actuated by a SELF TEST switch. This confirms functional operation of the instrument.

1-6. The measuring range for capacitance is from 0.01pF to 19.99mF, inductance from 0.01μ H to 1999H, and resistance from $1m\Omega$ to 19.99M Ω , which are measured with a basic accuracy of 0.2 to 0.3% depending on test signal level, frequency, and measuring equivalent circuit, and at typical measuring speeds of 220 to 260 milliseconds at

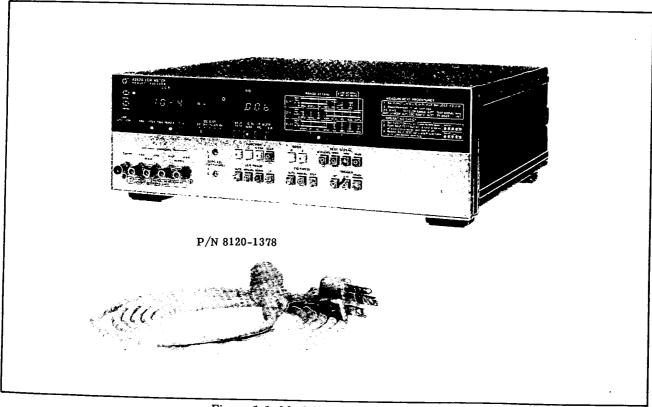
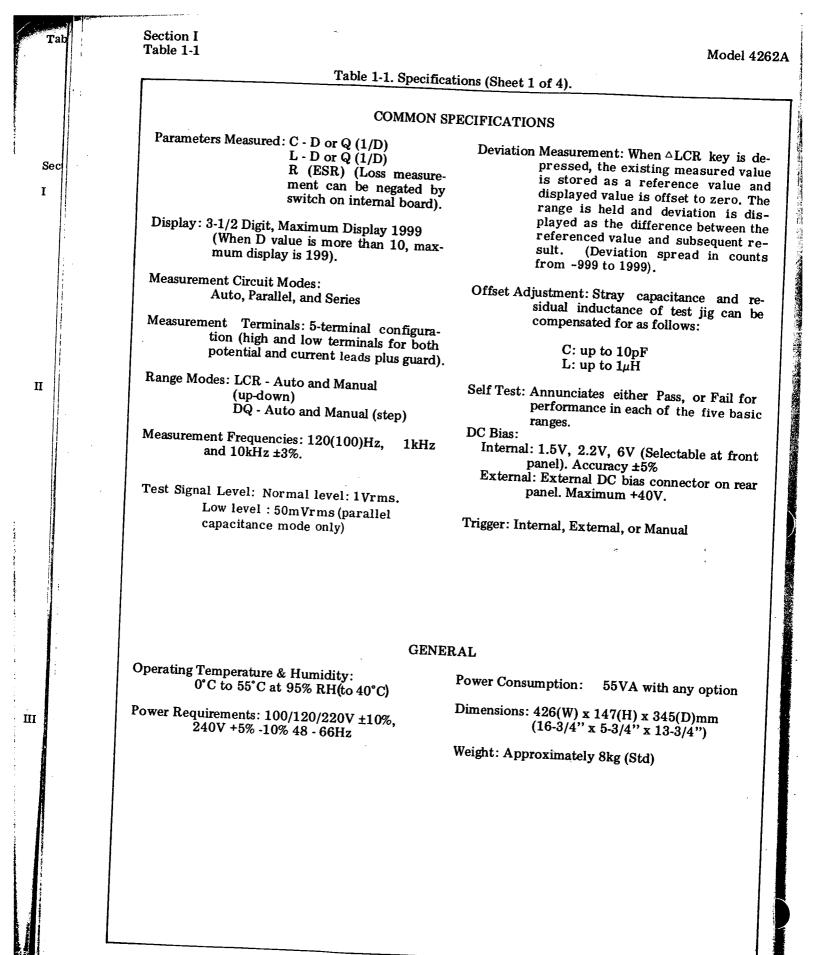



Figure 1-1. Model 4262A and Accessories.

1-2

Model 4262A

Section I Table 1-1

	Ta	ble 1-1. Specifications (Sheet 2 of 4).
	21=	1.6M 160K 161- 1.6K 160 16 1.6 0.16
		C-D, C-Q MEASUREMENT
Ranges	C 120Hz 2 1kHz 3 10kHz	$\begin{array}{c} 1000 pF 10.00 nF 100.0 nF \\ 100.0 pF 1000 pF 100.0 nF \\ 100.0 pF 1000 pF \\ 10.00 nF \\ 100.0 $
	D	.001~19.9 (2 Ranges)
	Q *1	0.05~1000 (4 Ranges)
	-	1V or 50mV (LOW LEVEL)
Test Signal Level *2	-11	10µA (100µÅ) 1mA (10mA 40mA)
Level 2	AUTO	Same as
	-400-	0.2% + 2 counts (Test signal level; 1V) 0.3% + 2 counts (Test signal level; 50mV)
C Accuracy *3	-11	(At 120Hz, 1kHz) $0.3\% + 2 \text{ counts}$ $3\% + 2 \text{ counts}$ (At 10kHz) $0.3\% + 2 \text{ counts}$ $1\% + 2 5\% + 2$
	AUTO	Same as -Chi- Mode Same as -I+w- Mode
D(1/Q) Accuracy •3	₩	0.2% + (2 + 200/Cx) counts At 120Hz, 1kHz 0.5%)+ (2 + 200/Cx) counts (Test signal level; 1V) 0.3% + (2 + 1000/Cx) counts At 120Hz, 1kHz 1.0% + (2 + 1000/Cx) counts At 120Hz, 1kHz 1.0% + (2 + 1000/Cx) counts At 10kHz
	-11	(At 120Hz, 1kHz) $0.3\% + (2 + Cx/500)$ counts $4x + (5 + \frac{Cx}{500})$ (At 10kHz) $0.5\% + (2 + Cx/500)$ counts $4x + (5 + \frac{Cx}{500})$
	AUTO	Same as -CM- Mode Same as -I+ Mode

*1 Calculated from D value as a reciprocal number.
*2 Typical data, varies with value of D and number of counts.
*3 ±(% of reading + counts). Cx is capacitance readout in counts. This accuracy only applies for D values to 1.999. (For higher D values, refer to General Specifications).
*4 (5% + 2 counts) at 1kHz.

4

Accuracy applies over a temperature range of $23^{\circ}C \pm 5^{\circ}C$ (At 0°C to 55°C, error doubles).

Note: C accuracy for higher D values are unspecified.

Table 1-1. Specifications (Sheet 3 of 4).

L-D, L-Q MEASUREMENT										
Ranges	L	120Hz; 1kHz 10kHz	1000μH 100.0μH 10.00μH	1000µH	100.0mH 10.00mH 1000µH	1000mH 100.0mH 10.00mH	10.00H 1000mH 100.0mH	100.0H 10.00H 1000mH	1000H 100.0H 10.00H	
,	D*	1		.001~19.	9 (2 Range	s)	· · · · ·			
λ	Q			0.05~100	00 (4 Range	es)				
×) -(\$\$}-					1	v		
Test Signal Level *2	-7	0-W-	40mA	10mA	1mA	100µA	10μΑ			
Level	A	UTO		Same as	-38	Mode	Same a	<u>s</u> - C, -	Mode	
	_	an l		(At 120H	z, 1 kHz)	0.3% +	2 counts	1% + 2	counts	
	╶┖ѿ҉	₩₽		(At 10	kHz)	0.3% + 2	2 counts	1% + 2	5% + 2	
L Accuracy*3	_	_	0.2% + 2 counts (At 120					(At 120Hz	, 1kHz)	
	-7	₽~₩~	0.3% + 2 0.2% + 2 counts					(At 10kHz)		
	Α	UTO		Same as	-750	Mode	Same a	us_ -∰	Mode	
		<u> </u>		(At 120H	z, 1kHz)	0.3% + (3	+ Lx/500)	1%+(3 +	Lx/500)	
	- Ĺ ŵ,┣		(At 10kHz) $0.5\% + (3 + Lx/500) 13 + (3 - \frac{Lx}{500}) 53 + (5 - 1) 13 + (3 - \frac{Lx}{500}) 13 + (3 - 1) 13 + ($					$5\% + (5 + \frac{Lx}{500})$		
D(1/Q) Accuracy *3				0.2% + ((3 + 200/L	k) counts		(At 120Hz	, 1kHz)	
-	-787-444	•••••		0.5% +	(3 + 200/L	x) counts		(At 10kH	z)	
	A	UTO		Same as	-78	Mode	Same a	us -(∰) -	Mode	

*1 Calculated from D value as a reciprocal number.

*2 Typical data, varies with value of D and number of counts.

*3 ±(% of reading + counts). Lx is inductance readout in counts. This accuracy only applies for D values to 1.999.

Accuracy applies over a temperature range of 23°C ± 5°C (At 0°C to 55°C, error doubles).

		f	R/ES <u>R</u> M	EASURE	MENT	£15	5)	<u> </u>
Ranges	120Hz R/ESR 1kHz 10kHz	$1000 \mathrm{m}\Omega$	10.00Ω	100.0Ω	100 0Ω	10.00kΩ	100.0kΩ	1000kΩ	10.00MΩ
	÷	•					1V		
Test Signal Level *1	-11	40m A	10mA	1mA	100µA	10μΑ			
	AUTO	Sa	me as -11-	w787-w-	Mode	Sam	eas C	М М	lode
						0.3	% + 2 ςοι	unts *3	
Accuracy *2	-11		0.2	% + 2 coi	ints				
	AUTO	Sar	Same as -I+Mode Same as						

*1 Typical data, varies with number of counts.
*2 ±(% of reading + counts).

*3 (5% + 2 counts) on 10.00M Ω range at 10kHz.

** Measurement range for ESR (equivalent series resistance) is from $1m\Omega$ to $19.99k\Omega$ (typical), which varies with series capacitance and inductance value refer to "REFERENCE DATA".

Accuracy applies over a temperature range of $23^{\circ}C \pm 5^{\circ}C$ (At 0°C to 55°C, error doubles.)

Model 4262A

Table 1-1. Specifications (Sheet 4 of 4).

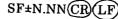
OPTIONS

- Option 001: Simultaneous BCD output of LCR and DQ data (positive true). Max. sink current 16mA. Mating connector (P/N 1251-0085). (Alternate BCD output of LCR and DQ data selectable by switch on internal board).
- Option 004: Digital comparator (can not be used with OPT 101). Compares measured value with high and low limit settings for LCR or DQ and provides HIGH, IN, LOW comparison outputs.
 - Limit setting range: 0000 1999 for each limit switch.
 - Comparison output: Visual, relay contact, and TTL level.
 - Visual: 3 LED's indicate HIGH(red), IN (green), or LOW (red).

Relay contacts: SPST contacts to circuit common for each HIGH, IN and LOW output.

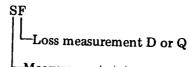
TTL level: Open collector circuits to high level (open) for each HIGH, IN and LOW outputs (fanout max. 30mA).

Option 101: HP-IB data output & remote control.


Remotely controllable functions: Function (L, C, R/ESR, △LCR) Loss (D, Q) LCR range DQ range Circuit mode Test frequency & level Trigger Self test Data output: C - D/Q, L - D/Q, R/ESR

- Internal function allowable subsets: SH1, AH1, T5, L4, RL1, DC1 and DT1.
- Data output format: Either of two formats may be selected. Switchable at rear panel (no + sign outputs). Format A.

SFFT±N.NNNE+NN, SF±N.NN(CR)(LF)


Format B.

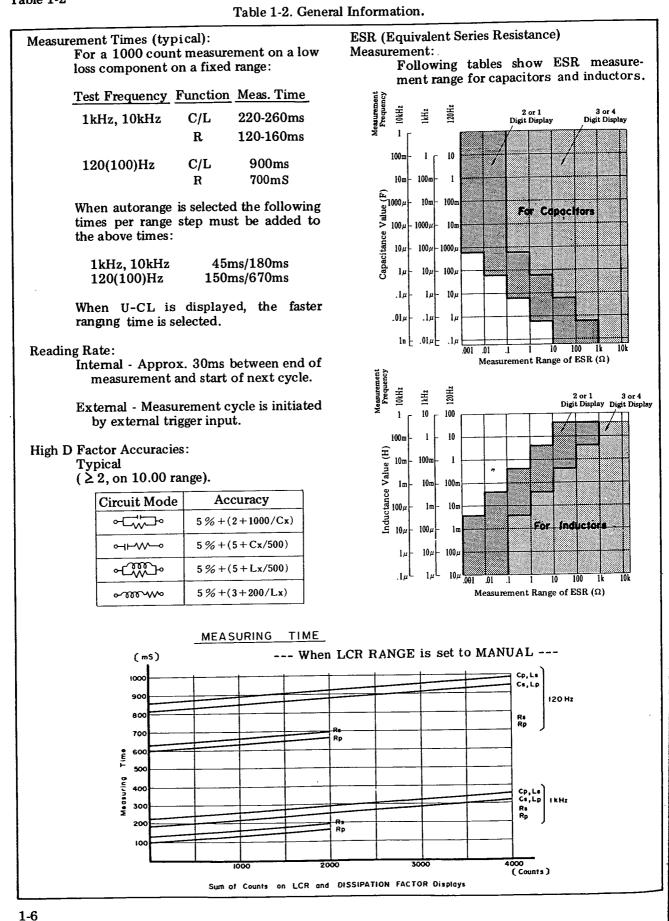
SFFT±N.NNNE±NNCR(LF)

----Measurement Equivalent Circuit

–Measurement Status

–Measurement status

Option 010: 100Hz test frequency instead of 120Hz.


ACCESSORIES AVAILABLE

- 16061A: Test fixture, direct coupled, 5-terminal Two kinds of inserts are included for components with either axial or radial leads. Usable on all ranges of 4262A.
- 16062A: Test cable with alligator clips, 4-terminal. Useable for low impedance measurements. Measurement range at 1kHz is L \leq 2H, C \geq 200nF and R \leq 10k Ω . [For L and C measurements, these ranges increase by x10 at 120 (100)Hz and decrease by same factor at 10kHz].
- 16063A: Test cable with alligator clips, 3-terminal. Useable for high impedance measurements. Measurement range at 1kHz is $L \ge 3$ mH, $C \le 10\mu$ F and $R \ge 200\Omega$. [For L and C measurement, these ranges increase by x10 at 120(100)Hz and decrease by same factor at 10kHz].

I

п

ш

Model 4262A

1kHz and 10kHz and about 900 milliseconds at 120Hz. The wide range capability of the 4262A enables a measurement range from small capacitances such as mica capacitors and the parasitic capacitance of a semiconductor device through high capacitances such as the measurement of electrolytic capacitors to be covered. A wide range of inductance measurements from the inductance of a high frequency transformer to that of a power transformer can be measured. The wide resistance range permits the measurement of wirewound resistors through the measurement of solid resistors. In parallel capacitance measurements, either a test signal level of 1Vrms, or 50mVrms can be selected.

1-7. The 4262A has the capability of making capacitance, inductance, and resistance deviation measurements. This function is enabled by pushing the Δ LCR switch to display the deviation of a reference value. When the Δ LCR switch is depressed the reference value is obtained and memorized from the preceding measurement. The practical use of this feature is evident when it is, desired to make a measurement on a variable capacitor: First, the minimum value is measured, then the Δ LCR button is pushed. Minimum to maximum capacitance is now displayed as the capacitor is rotated through its range. For parallel capacitance measurements, test signal levels of either 1Vrms or 50mVrms may be selected. Other versatile 4262A capabilities and features are, for example, the use of internal and external dc bias voltages, LC zero adjustment, and options providing BCD output, HP-IB interfacing capability, or a comparator function.

1-8. SPECIFICATIONS.

1-9. Complete specifications of the Model 4262A LCR Meter are given in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. The test procedures for the specifications are covered in Section IV Performance Tests. Table 1-2 lists gen-

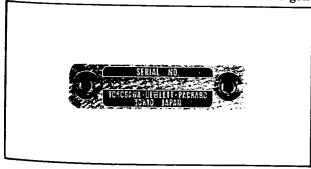


Figure 1-2. Serial Number Plate.

eral information. General information is not specifications but is typical characteristics included as additional information for the operator. When the 4262A LCR Meter is shipped from the factory, it meets the specifications listed in Table 1-1.

1-10. SAFETY CONSIDERATIONS.

1-11. The Model 4262A LCR Meter has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument and is shipped from the factory in a safe condition.

1-12. This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

1-13. INSTRUMENTS COVERED BY MANUAL.

1-14. Hewlett-Packard uses a two-section nine character serial number which is marked on the serial number plate (Figure 1-2) attached to the instrument rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies country where instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-15. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-16. In addition to change information, the supplement may contain information for correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on title page of this manual, see Section VII Manual Changes. 1-17. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-18. OPTIONS.

1-19. Options for the Model 4262A LCR Meter are available for adding the following capabilities:

Option 001: BCD Parallel Data Output.

Option 004: Comparator. A comparator function providing GO/NO-GO judgement with HIGH and LOW limits for LCR and D/Q.

Option 101: HP-IB Interface.

Option 010: 100Hz Test Frequency.

(instead of 120Hz)

Options 907, 908 or 909 are handle or rack mount kits. See paragraph 1-29 for details.

Option 910: Extra Manual.

1-20. OPTION 001.

1-21. The 4262A option 001 provides separate BCD parallel data output for L, C, R/ESR and dissipation factor or quality factor simultaneously from the two rear panel connectors. With this option, external data processing devices such as a digital printer can be used with the 4262A.

1-22. OPTION 004.

1-23. The 4262A Option 004 provides for GO/NO-GO judgement by comparing L, C, R/ESR and D/Q values to HIGH and LOW limits. Three judgement outputs are provided: LED lamp display, relay contacts, or TTL level voltages (open collectors):

- HIGH . .measured value is not less than HIGH limit.
- IN measured value is less than HIGH limit and not less than LOW limit.

LOW ... measured value is less than LOW limit.

1-24. OPTION 101.

1-25. The 4262A Option 101 provides interfacing functions to both transfer L, C, R/ESR and D/Q data to HP Interface Bus line and to receive remote control signals from HP Interface Bus line.

1-26. OPTION 010.

1-27. The 4262A Option 010 provides test frequencies of 100Hz, 1kHz, and 10kHz (100Hz is used instead of standard 120Hz). All other electrical performance is the same as that of standard instrument.

1-28. OTHER OPTIONS.

1-29. The following options provides mechanical parts necessary for rack mounting and hand carrying:

Option 907: Front Handle Kit. Option 908: Rack Flange Kit. Option 909: Rack Flange and Front Handle Kit.

The installation procedures for these options are detailed in section II.

1-30. The 4262A Option 910 provides an extra copy of the operating and service manual.

1-31. ACCESSORIES SUPPLIED.

1-32. Figure 1-1 shows the HP Model 4262A LCR Meter, power cord (HP Part No. 8120-1378), and fuses (HP Part No. 2110-0007 and 2110-0202).

1-33. ACCESSORIES AVAILABLE.

1-34. For effective and easy measurement, three styles of fixtures and leads for the measurement of various components are available. These are listed in Table 1-1. A brief description of each of these fixtures and leads is given in Table 1-3. Refer to Section III Figure 3-3 on page 3-8 for detailed information on these devices.

2.

2-2-

2

2-

2 - 3

OP

3-1

3-3

3-5 3-7

3-9.

3-11

3-13 3-15 3-17 3-10

Π

Se

I

Ŧ

•

Table 1-3. Accessories Available.

Model	Description
HP 16061A	Test Fixture (direct coupled type) for general measurement of both axial and
	vertical lead components.
HP 16062A	Test Leads (with alligator clips) useful for low inductance, high capacitance or low resistance (less than $10k\Omega$) measure- ments.
	Test Leads (with alligator clips) for general component measurement and especially useful for high impedance measurements.
HP P/N 5060-4017	Extender Board used for 4261A troubleshooting.

Section I Table 1-4

Model 4262A

1

Table 1-4.	Recommended	Test E	quipment.
------------	-------------	--------	-----------

Instrument	Critical Specifications	Recommended Model	*Use
Frequency Counter	Frequency Range: 40Hz to 10kHz Sensitivity: 50mVrms min.	HP 5300A/ w 5306A	Р
Capacitance Standard (See para. 4-3)	Capacitance Values: 100pF, 1000pF, 10nF, 100nF, 1000nF and 10µF	GR Type 1413 GR Type 1417	P, A
Resistance Standard (See para. 4-3)	Resistance Values: $1k\Omega$, $10k\Omega$, $100k\Omega$ and $10M\Omega$	GR Type 1443-Y	P, A
Inductance Standard (See Para. 4-3)	Inductance Value: 100mH	GR Type 1482-L	Р
DC Voltmeter	Voltage Range: 1V to 10V Sensitivity: 10mV min.	HP 5300A/ w 5306A	P, A
Oscilloscope	Bandwidth: 10MHz min. Vertical Sensitivity: 5mV/div. Horizontal Sweep Rate: 1µs/div.	HP 180C/ w 1801A/ w 1821A	A, T
Signature Analyzer		HP 5004A	Т
Current Tracer		HP 547A	Т
Service Kit	Signature Analysis Test Board	HP P/N: 04262-87002	Т
DUT Box	Comprises L, C and R components whose values are calibrated at 120Hz and 1kHz.	HP 16361A	P, A
DUT Box	Comprises L, C and R components whose values are calibrated at 10kHz.	HP 16362A	P, A
*P=Performan			

SECTION II

2-1. INTRODUCTION.

2-2. This section provides installation instructions for the Model 4262A LCR Meter. The section also includes information on initial inspection and damage claims, preparation for using the 4262A, packaging, storage, and shipment.

2-3. INITIAL INSPECTION.

2-4. The 4262A LCR Meter, as shipped from the factory, meets all the specifications listed in Table 1-1. On receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, notify the carrier as well as the Hewlett-Packard office and be sure to keep the shipping materials for carrier's inspection until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. The procedures for checking the general electrical operation are given in Section III (Paragraph 3-5 Basic Operating Check) and the procedures for checking the 4262A LCR Meter against its specifications are given in Section IV. Firstly, do the self test. If the 4262A LCR Meter is electrically questionable, then do the Performance Tests to determine whether the 4262A has failed or not. If contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the self test or performance tests, notify the nearest Hewlett-Packard office (see list at back of this manual). The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE.

2-6. POWER REQUIREMENTS.

2-7. The 4262A requires a power source of 100, 120, 220 Volts ac $\pm 10\%$, or 240 Volts ac $\pm 5\%$, -10%, 48 to 66Hz single phase. Power consumption is approximately 55 watts.

WARNING

IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN EXTER-NAL AUTOTRANSFORMER FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY.

2-8. LINE VOLTAGE AND FUSE SELECTION.

CAUTION

BEFORE TURNING THE 4262A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER SUPPLIED.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection card and the proper fuse are factory installed for the voltage appropriate to instrument destination.

CAUTION

USE PROPER FUSE FOR LINE VOLTAGE SELECTED.

CAUTION

MAKE SURE THAT ONLY FUSES FOR THE REQUIRED RATED CURRENT AND OF THE SPECI-FIED TYPE ARE USED FOR RE-PLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED.

2-10. POWER CABLE.

2-11. To protect operating personnel, the

Section II Paragraph 2-12

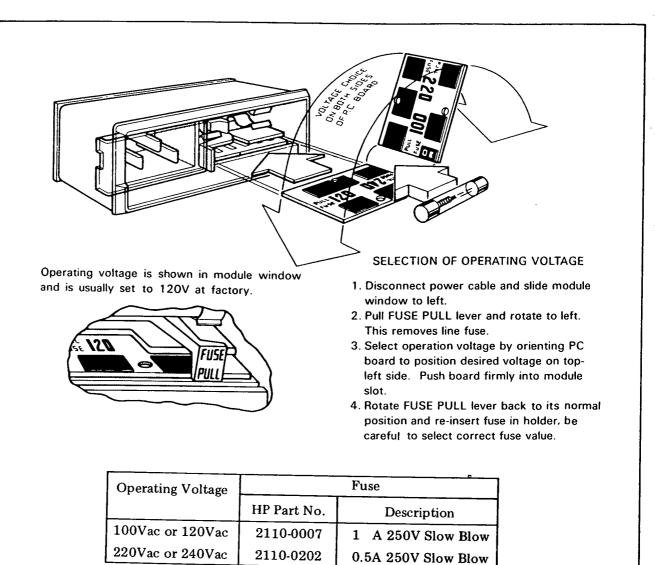


Figure 2-1. Voltage and Fuse Selection.

National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4262A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire.

2-12. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-0048) and connect the green pigtail on the adapter to power line ground.

CAUTION

THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITH-OUT PROTECTIVE CONDUCTOR (GROUNDING).

Model 4262A

2-13. Figure 2-2 shows the available power cords, which may be used in various countries including the standard power cord furnished with the instrument. HP Part number, applicable standards for power plug, power cord color, electrical characteristics and countries using each power cord are listed in the figure. If assistance is needed for selecting the correct power cable, contact nearest Hewlett-Packard office.

2-14. Interconnections.

2-15. When an external bias is applied to the sample capacitor through DC BIAS input connectors on the 4262A rear panel, both plus and minus sides of the external power supply should be connected to the plus and minus sides of the 4262A EXT DC BIAS connector, respectively.

CAUTION

THE MAINS PLUG MUST BE IN-SERTED BEFORE EXTERNAL CONNECTIONS ARE MADE TO MEASURING AND/OR CON-TROL CIRCUITS

2-16. Operating Environment.

2-17. Temperature. The instrument may be operated in temperatures from 0° C to $+55^{\circ}$ C.

2-18. Humidity. The instrument may be operated in environments with relative humidities to 95%to 40° C. However, the instrument should be protected from temperature extremes which cause condensation within the instrument.

2-19. Installation Instructions.

2-20. The HP Model 4262A can be operated on the bench or in a rack mount. The 4262A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. For use, the instrument stands are designed to be pulled towards the front of instrument.

2-21. Installation of Options 907, 908 and 909.

2-22. The 4262A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4262A is presented in Figure 2-3.

2-23. STORAGE AND SHIPMENT.

2-24. Environment.

2-25. The instrument may be stored or shipped in environments within the following limits:

Temperature	$\dots -40^{\circ}$ C to +75°C
Humidity	to 95%
Altitude.	

The instrument should be protected from temperature extremes which cause condensation inside the instrument.

2-26. Packaging.

2-27. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-28. Other Packaging. The following general instructions should be used for re-packing with commercially available materials:

- a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number.
- b. Use strong shipping container. A double-wall carton made of 350 pound test material is adequate.
- c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.
- d. Seal shipping container securely.
- e. Mark shipping container FRAGILE to ensure careful handling.
- f. In any correspondence, refer to instrument by model number and full serial number.

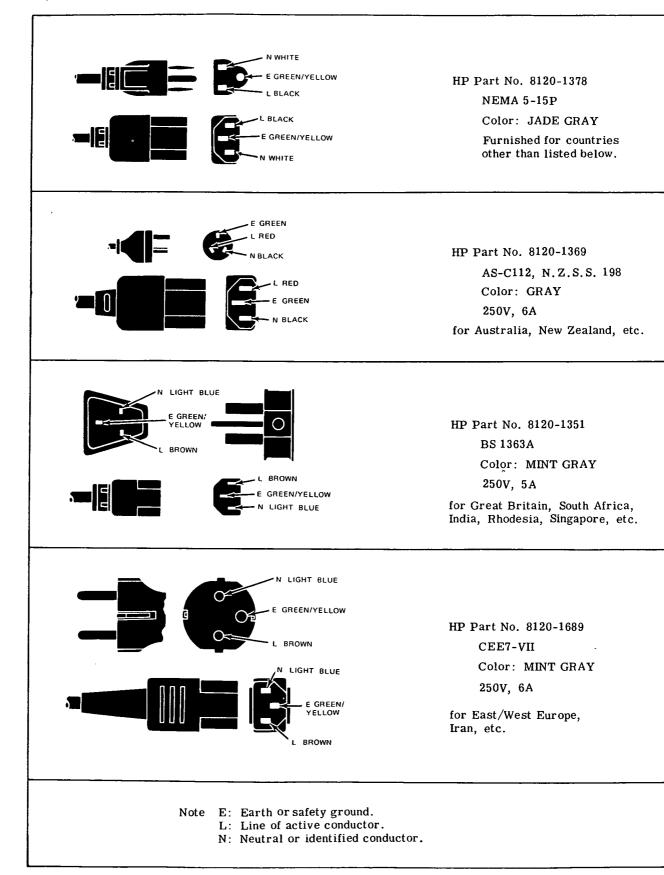


Figure 2-2. Power Cables Supplied.

2-4

•

Model 4262A

Section II -Figure 2-3

Option	Kit Part Number Parts Included Part Number		Part Number	Q'ty	Remarks
907	Handle Kit 5061-0089	Front Handle Trim Strip #8-32 x 3/8 Screw	(3) 5060-9899 (4) 5060-8896 2510-0195	2 2 6	9.525mm
908	Rack Flange Kit 5061-0077	Rack Mount Flange #8-32 x 3/8 Screw	(2) 5020-8862 2510-0193	2 6	9.525mm
909	Rack Flange & Handle Kit 5061-0083	Front Handle Rack Mount Flange #8-32 x 3/8 Screw	(3) 5060-9899 (5) 5020-8874 2510-0194	2 2 6	15.875mm

1. Remove adhesive-backed trim strips () from side at right and left front of instrument.

- 2. HANDLE INSTALLATION: Attach front handle (3) to sides at right and left front of instrument with screws provided and attach trim (4) to handle.
- 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided.
- 4. HANDLE AND RACK MOUNTING: Attach front handle (3) and rack mount flange (5) together to sides at right and left front of instrument with screws provided.
- 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar).

Figure 2-3. Rack Mount Kit

Section II Paragraphs 2-29 to 2-34

2-30. When it is desired to add one or two of the available optional features to a standard 4262A instrument, perform the installation as follows:

Refer to option installation illustrations on facing page.

- a. Push LINE switch to off.
- b. Remove instrument top cover.
- c. Follow the appropriate paragraph below.
- 2-31. OPTION 001 BCD DATA OUTPUT INSTALLATION.
 - a. Remove the left side middle and lower blind covers from the rear panel.
 - b. Install two 50-pin connector assemblies in the openings.
 - c. Set BCD switch of SW1 on A23 board assembly (RED/ORANGE GUIDE, P/N: 04262-66523 or 04262-66623) from OFF to opposite position. This board is located third from front on the right side.
 - d. Connect cable attached to A23 board (shown below) between A23 and A35 BCD Option board assemblies (P/N: 04262-66535). Install A35 in RED/GREEN GUIDE option receptacle.
 - e. Plug 2 each flat cable assemblies from A35 BCD Option board into connector boards of rear panel connector assemblies.
 - f. Install instrument top cover.

- 2-32. OPTION 004 COMPARATOR INSTALLATION.
- Refer to Fig 2-4 for installation procedure.
- 2-33. COUPLING OPTION 004 COMPARATOR WITH OPTION 001 BCD DATA OUTPUT INSTALLATION.
 - a. Set CMP (comparator) and BCD option switches of SW1 ON A23 board assemblies (RED/ORANGE GUIDE, P/N: 04262-66523 or 04262-66623) from OFF to opposite position. This board is located third from front on the right side.
 - b. Connect cables attached to A23 board between A23 and A24 comparator option BCD board assembly. No other cable assembly change is necessary for this combination of options.
 - c. Refer to Paragraphs 2-31 and 2-32 for other installation procedures.
- 2-34. OPTION 101 HP-IB REMOTE CONTROL AND DATA OUTPUT INSTALLATION.
 - a. Remove right side blind covers from rear panel.
 - b. Install connector board assembly (P/N: 04262-66503) in the opening and mount with washers and nuts included with assembly.
 - c. Set the HP-IB switch of SW1 on A23 board assembly from OFF to opposite position. The A23 board is located on the right side third from front.
 - d. Connect cable assembly attached to A25 board between A23 and A25 HP-IB option board assemblies (P/N: 04262-66525). Install A25 in RED/GREEN GUIDE option receptacle.
 - e. Plug flat cable assembly from connector board assembly P/N: 04262-66503 into A25 board assembly (installed in RED/GREEN GUIDE receptacle).

OPTION 101 IS NOT COMPATIBLE WITH OPTIONS 001 AND 004. Model 4262A

Section II Figure 2-4

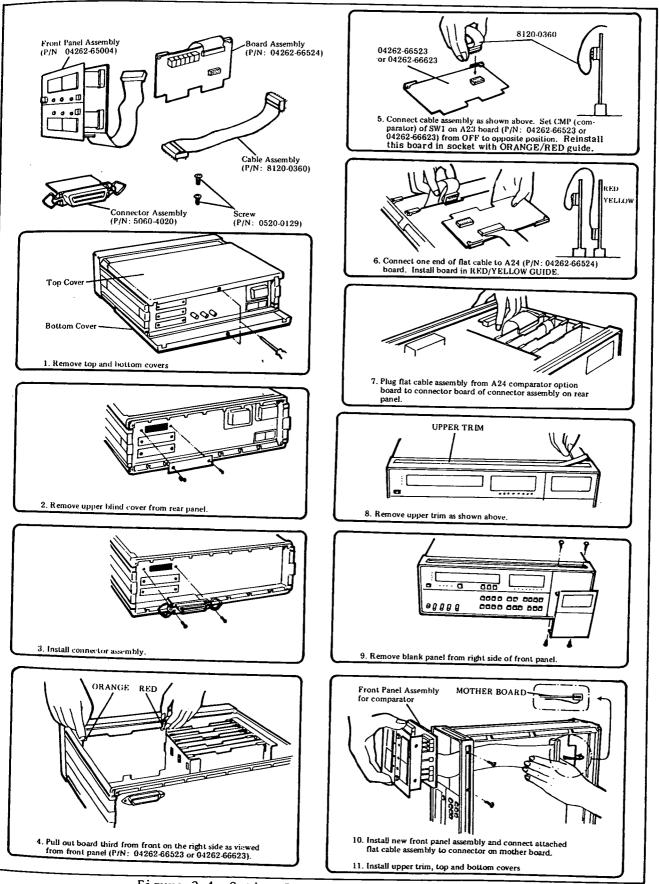


Figure 2-4. Option Installation Illustrations.

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. This section provides the operating information to acquaint the user with the 4262A LCR Meter. Basic product features and characteristics, measurement procedures for various applications, an operational check of the fundamental electrical functions, and operator maintenance information is presented in this section. Operating cautions throughout the text should be carefully observed.

3.3. PANEL FEATURES.

3-4. Front and rear panel features for the 4262A are described in Figures 3-1 and 3-2. Description numbers match the numbers on the photographs. Other detailed information for panel displays and controls are covered in the Operating Instructions (paragraph 3-7).

3-5. SELF TEST (Basic Operating Check).

WARNING

ANY INTERRUPTION OF THE PROTECTIVE GROUNDING CON-DUCTOR INSIDE OR OUTSIDE THE INSTRUMENT OR DISCON-NECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO CAUSE THE INSTRUMENT TO BE DANGEROUS. INTENTIONAL INTERRUPTION IS PROHIBITED.

WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION OFFERED BY FUSES HAS BEEN IMPAIRED, THE INSTRUMENT MUST BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNIN-TENDED OPERATION.

CAUTION

BEFORE ANY OTHER CONNEC-TION IS MADE, THE PROTEC-TIVE EARTH TERMINAL MUST BE CONNECTED TO A PROTEC-TIVE GROUNDING CONDUCTOR.

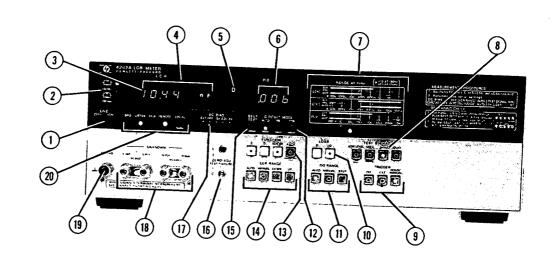
3-6. Functional operation of the Model 4262A should be confirmed by the SELF TEST switch before measuring samples of interest. This test can

be done under all conditions of FUNCTION and TEST SIGNAL settings. Tests under certain combined conditions of FUNCTION and TEST SIGNAL settings are done for five ranges. A test for a range ends with a display of PASS (normal operation) or FAIL (abnormal operation) and then next range test is started. Range shifting for this test is done automatically from lower to higher.

All the combinations of FUNCTION and TEST SIGNAL switch settings are listed below. Even if the FUNCTION or TEST SIGNAL switch settings are limited for proposed sample measurement, all combined conditions should be tested.

Pushbutton Switch Setting *	UNKNOWN** Connectors
(<u>C</u>), (<u>120Hz</u>), (<u>SELF TEST</u>)*** (C), (<u>1kHz</u>), (<u>SELF TEST</u>) (C), (<u>10 kHz</u>), (<u>SELF TEST</u>) (C), (<u>LOW LEVEL</u>), (10 kHz), (<u>SELF TEST</u>) (C), (LOW LEVEL), (<u>1 kHz</u>), (<u>SELF TEST</u>) (C), (LOW LEVEL), (<u>120 Hz</u>), (<u>SELF TEST</u>)	Open between HIGH side and Low side
(L), (120 Hz), (SELF TEST) (L), (1 kHz), (SELF TEST) (L), (1 kHz), (SELF TEST) (R/ESR), (10 kHz), (SELF TEST) (R/ESR), (1 kHz), (SELF TEST) (R/ESR), (1 kHz), (SELF TEST) (R/ESR), (120 Hz), (SELF TEST)	Short between HIGH side and LOW side.

When FUNCTION or TEST SIGNALS switch setting is changed, the SELF TEST switch is automatically disabled. Therefore, whenever a new setting is made, push the SELF TEST switch again.


For ** see page 3-5

Se

I

п

Ш

- ILINE ON/OFF switch: Turns instrument on and readies instrument for measurement
- Circuit Mode Indicator: LED lamp, next to equivalent measuring circuit being used, lights. Sample connected to UNKNOWN terminals (18) is measured in an equivalent circuit selected by FUNCTION (13) and CIRCUIT MODE (12) switches and is indicated by appropriate LED lamp. Equivalent circuits are shown as electronic circuit symbols at the left of indicator lamps. Desired circuit parameter of component is measured in one of the following selected circuit modes:

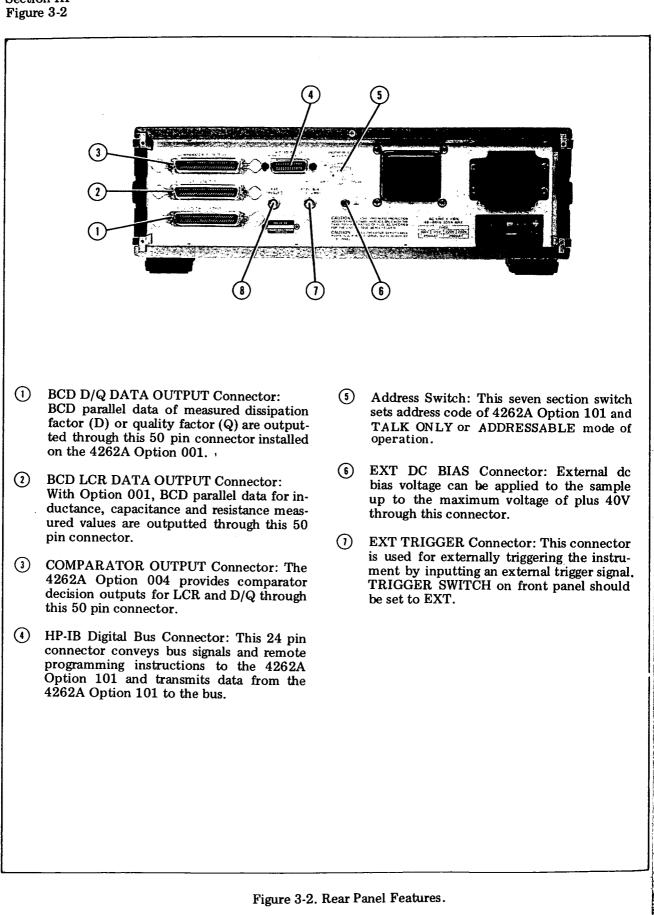
Parallel capacitance	
Parallel resistance	Lmt
Series capacitance	
Series resistance	-11
Parallel inductance	-[
Series inductance	
Series resistance	-00-44-

(3) Trigger Lamp: Turns on during sample measuring period. Turns off during period when instrument is not taking measurement (or hold period). There is one turnon-and-off cycle per measurement. This lamp turns on and off repeatedly when TRIGGER (9) is set to INT.

- LCR Display: Inductance, capacitance or resistance value including the decimal point and unit is displayed in 3-½ digit decimal number from 0000 to 1999. If the sample value exceeds 1999 in a selected range, O-F(Over-Flow) appears in this display. This display also shows PASS or FAIL when SELF TEST is performed.
- D/Q Indicator: In a capacitance or inductance measurement, this indicator indicates which of D (dissipation factor) or Q (quality factor) is displayed in D/Q display (6). In resistance measurement, this indicator is also lit (however, D or Q indication has no meaning and D/Q display (6) is left blank).
- D/Q Display: Value for dissipation factor or quality factor is displayed in capacitance and/or inductance measurement. In resistance measurement, this display is kept blank.
- (1) RANGE Indicator: The range automatically or manually selected is indicated by LED lamp. The table printed above the LED array shows the measurement ranges of the Model 4262A.
- TEST SIGNAL These pushbuttons enable selection of measurement frequency-120Hz, 1kHz or 10kHz and that of low test voltage of the signal applied to sample to be tested. LOW LEVEL switch is effective only in parallel capacitance measurements, supplying a test voltage of 50mVrms.

Figure 3-1. Front Panel Features (sheet 1 of 2).

V. Date 1262A


- TRIGGER: These pushbuttons select trigger mode, INT, EXT or HOLD/MANUAL. INT key provides internal trigger which enables instrument to make repeated automatic measurements. In external trigger mode (EXT), trigger signal should be applied to either of following two connectors: (1) EXT TRIGGER input connector on the rear panel (2) 50 pin connector of Option 001 or 004 on the rear panel. HOLD/MANUAL trigger mode provides trigger signal for one measurement cycle when this key is depressed.
- OSS: These pushbuttons select whether D or Q value is displayed in the D/Q display (6) in capacitance or inductance measurements.
- D/Q RANGE: These pushbuttons select ranging method for loss measurement. AUTO: Optimum D/Q range is selected by internal logic circuit. MANUAL: D/Q range is fixed to a range.
 - Range change is done by depressing the STEP key on the right.
- **©** CIRCUIT MODE: Appropriate circuit mode for taking a measurement is selected and set with these pushbuttons. parallel equivalent circuit is selected by Α PRL key and series equivalent circuit by SER key. When AUTO key is pushed, the instrument automatically selects the appropriate parallel or series equivalent circuit.
- **W**FUNCTION:
 - These pushbuttons select relectrical circuit parameter to be measured as follows:
 - C: Capacitance together with dissipation factor (D) or quality factor (Q).
 - L:Inductance with dissipation factor (D) or quality factor (Q).
 - R/ESR: Resistance or Equivalent Series Resistance.
 - ^ALCR: Difference in L, C, or R value between the value of the sample under test and the internally stored value obtained by a measurement just before \triangle LCR key is depressed.
- LCR RANGE: These pushbuttons select ranging method for LCR measurement.

AUTO: Optimum range for the sample value is automatically selected.

- MANUAL: Measurement range is fixed (even when the sample connected to the UNKNOWN terminals is changed). Range change is done by depressing DOWN or UP key on the right.
- SELF TEST: This pushbutton performs (15) automatic check for checking the basic operation of Model 4262A. If normal operation is confirmed, "PASS" is displayed in LCR display (). If wrong performance is detected, a display of "FAIL" appears. See paragraph 3-5 for details.
- ZERO Adjustment Controls: These adjust-(16) ments provide proper compensation for cancelling stray capacitance and residual inductance which are present when a test fixture is mounted on the UNKNOWN terminals. Connectors are kept open for cancelling stray capacitance and shorted for cancelling residual inductance.
- DC BIAS Selector Switch: This switch per-(11)mits selection of internal DC bias voltage applied to sample (1.5Vdc, 2.2Vdc, or 6.0Vdc). When switch is set to EXT, it is used to apply external bias voltage from rear DC BÌÀS input connectors. OFF position is selected if no bias voltage is necessary.
- UNKNOWN Terminals: Consist of four (18) terminals: High current terminal (H_{CUR}), High potential terminal (HPOT), Low potential terminal (LPOT) and Low current terminal (Lcur). A five-terminal configuration is constructed by adding the GUARD terminal (19). A three-terminal configuration is constructed by shorting High terminals and Low terminals together with shorting bars. Under DC Bias operation, the high terminals have a positive DC voltage with respect to LOW terminals.
- GUARD Terminal: This is connected to (19) chassis ground of instrument and can be used as Guard terminal for increasing accuracy in certain measurements.
- HP-IB Status Indicator and LOCAL switch. (20) LED lamps for SRQ, LISTEN, TALK, and REMOTE which indicate status of interface between the 4262A (Option 101) and HP-IB controller. LOCAL switch enables front panel controls instead of remote control signals from HP-IB line.

Figure 3-1. Front Panel Features (sheet 2 of 2).

Section III

Model 4262A

Section III

** Two HIGH side terminals and two LOW side terminals should be connected with the shorting strap, for each configuration of the UNKNOWN terminals. When the UNKNOWN terminal configuration is not appropriate, for example, shorted (C) or open (L), display will show FAIL 1 (because they result from different causes, FAIL 2 or FAIL 3 are rarely displayed).

0	•			
	٠		•	
Ο	•	ρ	1	
-	•		1	

*** Setting change required is only the under lined switch setting.

CIRCUIT MODE SER in (L), (R/ESR)
or PRL in (C)
LOSSD
LCR RANGEMANUAL
D/Q RANGEMANUAL
TRIGGERINT

If FAIL is displayed, check the UNKNOWN terminal configurations as follows:

- (1) That the two HIGH side terminals (H_{CUR} -HPOT) and the two LOW side terminals (L_{CUR} - LPOT) are properly shorted.
- (2) That short or open conditions properly exist between HIGH and LOW side terminals.
- (3) That GUARD terminal is isolated (open) from both of HIGH and LOW terminals.

If FAIL is still displayed (under the above condition), notify the nearest Hewlett-Packard office with information detailing which combination of settings show FAIL.

During SELF TEST, other controls are automatically set as follows:

CIRCUIT MODE SER when FUNCTION
is set to L or R/ESR.
PRL when FUNCTION
is set to C.
LOSSD
LCR RANGE
D/Q RANGEMANUAL
TRIGGER INT

NOTE

TO ENSURE CORRECT RESULTS OF SELF-TEST OPERATION IN L AND R MEASUREMENT FUNCTIONS, CON-NECT ALL (HIGH AND LOW SIDE) UN-KNOWN TERMINALS TOGETHER WITH A LOW IMPEDANCE STRAP (IF THIS SHORT-CIRCUIT IS MADE AT THE ENDS OF THE TEST LEADS, COR-RECT RESULTS MAY NOT OCCUR). Section III Paragraphs 3-7 to 3-9

3-7. TEST SIGNALS.

3-8. Three test signal frequencies are available: these are 120Hz, 1kHz and 10kHz sinusoidal waveforms which have a frequency accuracy of 3%. The typical voltage applied to the sample or current flowing through the sample is specified in Table 3-1 for all test signal frequencies. A constant test voltage is supplied to the sample when measuring parallel parameters Lp, Cp, and Rp. The constant current method is adopted for the measurement of Ls, Cs, and Rs. The 50mVrms test voltage is used only for Cp measurement.

3-9. MEASUREMENT RANGE.

3-10. As given in Table 3-2, the 4262A has wide measurement ranges. Seven or eight ranges are available (depending upon measurement function) and the appropriate range is automatically selected for the value of sample connected to the 4262A UNKNOWN terminals. For applications which require a fixed measurement range (such applications are sometimes needed, for example, in inductance measurements), manual range control is pushbutton selectable. Four or five ranges, however, are used in the series and parallel equivalent circuit measurement modes. When the CIRCUIT MODE is set to AUTO, the 4262A will automatically select the appropriate circuit mode, range over the measurement ranges shadowed in Table 3-2, settle on the proper range, and measure the sample.

Table 3-1.	Sample	Voltage	\mathbf{or}	Current.
------------	--------	---------	---------------	----------

DANGE	CIRCUIT MODE						
RANGE -	Ls	Lp	Cs	Ср	Rs	Rp	
1	40mA rms			1Vrms (50mVrms)*	40mA rms		
2	10mA rms	<u> </u>		1Vrms (50mVrms)*	10mA rms		
3	1mA rms	<u> </u>		1Vrms (50mVrms)*	1mA rms		
4	100 μ A rms	1V rms	$10 \mu \text{A rms}$	lVrms (50mVrms)*	$100 \ \mu A \ rms$	1V rms	
5	$10 \ \mu A \ rms$	1V rms	$100 \mu \text{A rms}$	lVrms (50mVrms)*	$10 \mu \text{A rms}$	1V rms	
6		1V rms	1 μA rms			1V rms	
7		1V rms	10mA rms			1V rms	
8			40mArms		<u>*</u>	1V rms	

*When TEST SIGNAL is set to LOW LEVEL.

Table 3-2. Measurement Ranges.

CIRCUIT MODE Frequency	Range								
	1	2	3	4	5	6	7	8	
Lp	120 Hz 1 kHz 10 kHz				0000 mH 000.0 mH 00.00 mH	H 00:00 Hm 0000 Hm 0.000	000.0 H 00.00 H 0000mH	0000 H 000.0 H 00.00 H	
Ls	120 Hz 1 kHz 10 kHz	0000 µН 000.0 µН 00.00 µН	00.00mH 0000μH 0000.0μH	000.0mH 00.00mH 0000 μH	0000 mH 000.0 mH 00.00 mH	00.00 H 0000 mH 000.0 mH			
Ср	I 20 Hz I kHz I0 kHz	0000 pF 000.0 pF 00.00 pF	00.00 nF 0000 pF 000.0 pF	000.0 nF 00.00 nF 0000 pF	0000 nF 000.0 nF 00.00 nF	00.00 µF 0000 nF 000.0 nF			
Cs	120 Hz 1 kHz 10 kHz				0000 nF 000.0 nF 00.00 nF	00,00 μF 0000 nF 000.0 nF	000.0 μF 00.00 μF 0000 nF	0000 μF 000.0 μF 00.00 μF	00.00mF 0000μF 00020μF
Rp	120 Hz 1 kHz 10 kHz				0000 Ω 0000 Ω 0000 Ω	00.00 kΩ 00.00 kΩ 00.00 kΩ	000.0 kΩ 000.0 kΩ 000.0 kΩ	0000 kΩ 0000 kΩ 0000 kΩ	00,00 ΜΩ 00,00 ΜΩ 00,00 ΜΩ
Rs	120 Hz 1 kHz 10 kHz	0000 mΩ 0000 mΩ 0000 mΩ	Ω 00.00 Ω 00.00 Ω 00.00	000.0Ω 000.0Ω 000.0Ω	Ω 0000 Ω 0000 Ω 0000	00.00 kΩ 00.00 kΩ 00.00 kΩ			

Model 4262A

Model 4262A

3-11. INITIAL DISPLAY TEST.

3-12. The Model 4262A automatically performs a front panel LED display test for a few seconds after instrument is tuned on (after LINE button is depressed). The display test sequence is:

- 1. All front panel indicator lamps, except numeric segments and multiplier indicator lamps will illuminate. (SRQ, LISTEN, TALK and REMOTE lamps illuminate only when HP-IB option is installed).
- 2. Front panel pushbutton LED's and indicator lamps indicate that automatic initial settings (see Paragraph 3-13 which follows) have been set. Simultaneously, the LCR DISPLAY and DQ DISPLAY readouts are tested. All numeric displays show figures of 8 (\square) and multiplier indicators (p n μ m k M) light in turn.
- 3. Range indicator lamps step from right (upper range) to left (lower range). When steps 1, 2 and 3 have been completed, the trigger lamp begins to flash. Figures on numeric displays change to meaningful numbers showing that the 4262A is ready to take a measurement.

3-13. INITIAL CONTROL SETTINGS.

3-14. One of the sophisticated features of the 4262A is its automatic initial control setting function. After the instrument is turned on, the front panel control functions are automatically set as follows:

SELF TEST OFF	
CIRCUIT MODE AUTO	
FUNCTION C	
LCR RANGE AUTO	
LOSS D	
DQ RANGE AUTO	
TEST SIGNAL 1kHz	
TRIGGER INT	

As these initial settings provide the general capacitance measurement conditions applicable to a broad range of capacitance measurements, a capacitance can be usually measured by merely connecting the sample to the UNKNOWN terminals. Inductance or resistance can be measured by pressing the L FUNCTION or R/ESR FUNCTION buttons, as appropriate. When a different measurement is to be attempted, press appropriate pushbuttons and select desired functions.

3-15. D/Q MEASUREMENT.

3-16. The Model 4262A makes a loss measurement along with capacitance or inductance measurements on each measurement cycle. The measured loss factor is displayed in the form of the dissipation (D) or quality (Q) factor of the sample. The D or Q function is pushbutton selectable in both L and C measurements. D and Q measurement ranges are:

2 ranges	.001 to 1.999
	0.01 to 19.9
4 ranges	.050 to 1.996
	0.05 to 19.61
	00.1 to 166.7
	001 to 1000
	2 ranges 4 ranges

The D range, appropriate to the value of the sample is automatically selected. Alternately, a manual D range control is pushbutton selectable. Quality factor (Q) is calculated as a reciprocal dissipation number from the measured D value. Hence, the Q readout display will skip some numbers when low dissipation samples are measured. For example, when the dissipation measured is .010, the quality factor display is 100. When dissipation is .009, the quality factor reading is 111 (Q readings of 101 to 110 are not obtained). On the high D measurement range, the readout is displayed in 3 digits.

3-17. △LCR MEASUREMENT.

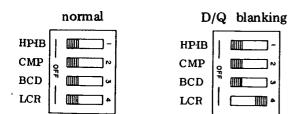
3-18. When many components of similar value are to be tested, it is sometimes more practicable to measure the difference between the value of the sample and a predetermined reference value. The [△]LCR function permits repetitive calculation of the difference between the reference and each individual sample and to display the result on the LCR DISPLAY. When the \triangle LCR FUNCTION button is pressed, the inductance, capacitance, or resistance value of the sample is stored in an internal memory. The 4262A will now display the difference between the stored value and the measured value of a sample connected to UNKNOWN. The LCR RANGE is automatically held in MANUAL for the duration of **△LCR** measurements (if another pushbutton is inadvertently pressed, the **\(LCR** measurement function will be reset and will require reactivating).

Section III

s I

п

ш


Accessory Model	Characteristics												
16061A Test Fixture	This fixture facilitates easy measurement of general type components with axial or vertical leads. To install fixture, disconnect shorting bars between high terminals and between low terminals. Insert fix- ture screws to firmly attach fixture to instrument. Two kinds of inserts are included (for components with either axial or vertical leads).												
	DUT range (at 1kHz)												
		pF μH				nF nH			•	H			
101		Ω	1	0 1	00	kΩ	_1	0 1	1 00	MΩ	10 - 10	1	<u>00</u>
	c				Ι_		_						┢
	- + -				+	+-				+-			╧
									<u> </u>				_
Five terminal construction test fixture.					+				<u> </u>	+-	-+		
16062A Test Leads				is esj	<u> </u>	<u> </u>	l		L				<u> </u>
	pot	-01612	a reg	us all	սսս		2 TCC	~~~ 0		isted		,	
	Mea	asura p µ	able I F H	<u>DUT :</u>	rang	<u>es (a</u> nF mH	<u>t 1]</u>			μF H	1() 1	00
		asura p µ	able I F H	DUT	rang	<u>es (a</u> nF mH	<u>t 1]</u>	kHz)		μF H	1() 1	
	С	asura p µ	able I F H	DUT	rang	<u>es (a</u> nF mH	<u>t 1]</u>	kHz)		μF H	1() 1	00
Test Leads for four terminal measurement		asura p µ	able I F H	DUT	rang	<u>es (a</u> nF mH	<u>t 1]</u>	kHz)		μF H) 1	
Test Leads for four terminal measurement (does not contain guard conductor).	C L R	p p (able I F H Q		00	es (a nF mH kΩ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00	μF Η ΜΩ			
	C L R The img are ten sma the	asura p p () () () () () () () () ()	able I F H Q 063A nces. gram to be apaci dual	DUT	artic T va oelo I fon es (le citar	es (a nF mH kΩ ulari lues v. T the ss th ace c ges (nF mH	at 11	kHz) 10 1 seful asura test appro- ne lea kHz)	00 whee ble ad e me ox. 1 ds.	$\mu \mathbf{F}$ \mathbf{H} $\mathbf{M}\Omega$ \mathbf{m}	easu the s nc eme F) c	rring 160 ot in nt o due	g hi)63
(does not contain guard conductor). 16063A Test Leads	C L R The imp are ten sma the Me	asura p p () () () () () () () () ()	able I F H O 063A nces. gram to be apaci dual able oF tH	LO 1 LO 1 LO 1 LO 1 LO 1 LO 1 LO 1 LO 1	artic T va oelo I fon es (le citar	es (a nF mH kΩ ulari lues v. T the ss th ace c ges (nF mH	at 11	kHz) 10 1 seful asura test appro- ne lea kHz)	00 whee ble ad e me ox. 1 ds.	$\mu \mathbf{F}$ \mathbf{H} $\mathbf{M}\Omega$ \mathbf{m}	easu the s nc eme F) c	rring 160 ot in nt o due	g hi of to
(does not contain guard conductor).	C L R The imp are ten sma the Me	asura p p () () () () () () () () ()	able I F H O 063A nces. gram to be apaci dual able oF tH	LO 1 LO 1 LO 1 LO 1 LO 1 LO 1 LO 1 LO 1	artic T va oelo I fon es (le citar	es (a nF mH kΩ ulari lues v. T the ss th ace c ges (nF mH	at 11	kHz) 10 1 seful asura test appro- ne lea kHz)	00 whee ble ad e me ox. 1 ds.	$\mu \mathbf{F}$ \mathbf{H} $\mathbf{M}\Omega$ \mathbf{m}	easu the s nc eme F) c	rring 160 ot in nt o due	g hi)63)- of to

3-19. D/Q Blanking Function (Switch selectable function inside cabinet).

3-20. The D/Q blanking function permits deactivating the D/Q measurement as desired. If operator has no need of D/Q measurement data, and alternatively desires to make higher speed LCR measurements, the switch for this function may be set. When the D/Q function is deactivated, measurement time is shortened to approximately 220 to 250 milliseconds (at 120Hz) and to 80 to 110 milliseconds (at 1kHz and 10kHz) as compared to standard measuring times (which includes a D/Q measurement). The D/Q deactivating switch is located on the A23 board assembly. To select this function, change setting of the switch as follows:

- a. Remove top cover.
- b. Take out A23 board (red and orange colored extractors).
- c. The selection switch is mounted near left edge of the A23 board.
- d. Change position of the switch as illustrated below.
- e. Reinstall the A23 board in its normal position.
- f. Replace top cover.

3-21. General Component Measurement.

3-22. Figure 3-7 shows the operating procedures for measuring an L, C or R (inductance, capacitance or resistance) circuit component. Almost all discrete circuit components (inductors, capacitors or resistors) except for components having special shapes or dimensions can be measured with this setup. Special components may be measured by using Test Leads 16062A or 16063A or by specially designed user built fixtures instead of 16061A Test Fixture.

3-23. Semiconductor Device Measurement.

3-24. The procedures for using the 4262A semiconductor device measurement capabilities are described in Figure 3-8. For example, the junction (interterminal) capacitance of diodes, collector output capacitance of transistors, etc., can easily and accurately be measured (with and without dc bias).

3-25. External DC Bias.

3-26. A special biasing circuit using external voltage or current bias, as needed for capacitor or inductor measurements, is illustrated in Figure 3-9. The figure shows sample circuitry appropriate to 4262A applications. Biasing circuits must avoid permitting dc current to flow into the 4262A as dc current increases the measurement error and the excess current sometimes may cause damage to the instrument. When applying a dc voltage to capacitors, be sure applied voltage does not exceed maximum working voltage and that you are observing polarity of capacitor. Note that the external bias voltage is present at Hcur and Hpot terminals.

3-27. Bias Voltage Settling Time. When a measurement with dc bias voltage superposed is performed, it takes some time for voltage across sample to reach a certain percentage of applied (desired) voltage. Figure 3-9 shows time for dc bias voltage to reach more than 99% of applied voltage and for 4262A to display a stable value. If the bias voltage across sample is not given sufficient time to settle, the displayed value may fluctuate or O-F may be displayed. Read measured value after display settles.

3-28. External Triggering.

3-29. For triggering the 4262A externally, connect an external triggering device to the rear panel EXT TRIGGER connector (BNC type) and press EXT TRIGGER button. The 4262A can be triggered by a TTL level signal that changes from low (0V) to high level (+5V). Triggering can be also done by alternately shorting and opening the center conductor of the EXT TRIGGER connector to ground (chassis).

Note

The center conductor of the EXT TRIGGER connector is normally at high level (no input).

3-30. TERMINAL CONFIGURATION.

3-31. Connection of DUT. The 4262A Unknown terminals consists of five binding post (type) connectors: H_{CUR} , H_{FOT} , L_{CUR} , L_{FOT} and GUARD. By connecting the stationary shorting straps to appropriate terminals, the UNKNOWN terminals can be adopted for the desired measurement terminal configuration: the two, three, four or five terminal method.

For measurements of samples having a medium order of impedance $(100\Omega \text{ to } 10k\Omega)$, the convenient two terminal method is suited to measurement requirements for good accuracy as well as for ease in connecting the sample. When converting to two terminals, shorting straps are attached to the UNKNOWN H_{CUR} and H_{POT} terminals, and L_{CUR} and L_{POT} terminals, respectively.

High impedance samples (greater than $1k\Omega$) -which includes low capacitance, high inductance and high resistance -- should be measured by the three terminal method to eliminate the effects of stray capacitances on the measurements. For this purpose, the guard conductor of the sample is connected to the instrument GUARD terminal.

In the measurement of low impedance samples (less than $1k\Omega$), efforts should be made to eliminate the effects of contact resistance, lead resistance, residual inductance and other residual parameters in the measuring apparatus. Four terminal configuration measurements allow stable, accurate measurement of high capacitance, low inductance and low resistance samples at minimum incremental errors in the measurement of low impedance samples. In the four terminal method, the shorting straps are disconnected to separate potential leads from current leads. Thereby, the characteristics of the sample can be precisely determined by the instrument irrespective of the various residual parameters present in the measuring signal current path. To ensure the best accuracy, the potential leads should be connected near to the sample.

The five terminal method, which adds the guard conductor to the four terminal configuration, expands the applicable measurement range into the higher impedance regions. Thus, this method covers a broad range of measurements from low to high impedance samples at the measuring frequency of the 4262A.

When test fixtures and test leads used have a shielding conductor and are designed to consider residual impedance, the measurement limitations described above for the individual terminal configurations can vary to some extent depending on the particular characteristics of the fixture and connections. Three accessories, the 16061A Test Fixture, the 16062A Test Leads, and the 16063A Test Leads are available. The characteristics of these accessories and applicable measurement ranges are outlined in Figure 3-3. These accessories make it easy to construct the desired terminal configuration.

IMPORTANT !

FOR CERTAIN TERMINAL MEAS-UREMENT CONFIGURATIONS, THE HCUR TERMINAL MUST BE CON-NECTED TO HPOT TERMINAL AND THE LCUR TERMINAL CONNECTED TO THE LPOT TERMINAL. OTHER-WISE, THE DISPLAYS WILL HAVE NO MEANING AND THE LIFE OF THE RELAYS USED IN THE INSTRU-MENT WILL SOMETIMES BE SHORT-ENED.

Note

The 4262A can not measure a sample which has one lead connected to earth (grounded).

3-32. OFFSET ADJUSTMENT.

3-33. Since test fixtures and test leads have different inherent stray capacitances and residual inductances, the measured value obtained with respect to the same sample may possibly differ depending on the test fixture (leads) used. These residual factors can be read from the 4262A display by properly terminating (short or open) the measurement terminals of the test jig. The front panel C ZERO ADJ and L ZERO ADJ controls permit compensation for these residual factors and can eliminate measurement errors due to the test jig. The capacitance or inductance readout can be set to zero for the particular test jig used with the instrument. In capacitance and inductance measurements, an incomplete offset adjustment causes two types errors:

1) Deviation from zero counts.

When a small capacity or a small inductance is measured, the measured capacitance (inductance) value becomes the sum of the capacitance (inductance) of sample and the stray capacitance (residual inductance) of test jig. The effects of the residual factors are:

Where, subscripts are

- m: measured value.
- x: value of sample.
- st: stray capacitance.
- res: residual inductance.

Both Cst and Lres cause the same measurement error and are independent of sample value.

Ш

2) Influence on high capacitance and high inductance measurements.

When a high inductance (a high capacitance) is measured, the residual factors in the test jig also contribute a measurement error. The affect of stray capacitance or residual inductance on measurement parameters are:

Stray capacitance	Offsets high inductance measurements.
Residual inductanc	e→Offsets high capacitance measurements.

These measurement errors increase in proportional to the square of the test signal frequency. The effects of the residual factors can be expressed as follows:

$$Cm = \frac{Cx}{1 - \omega^2 Cx Lres}$$

or $(\frac{Cm - Cx}{Cm} \approx \omega^2 Cx Lres)$

$$Lm = \frac{Lx}{1 - \omega^2 LxCst}$$
or
$$(\frac{Lm - Lx}{Lm} \approx \omega^2 LxCst)$$

In a 10kHz measurement, for the measurement error to be less than 0.1%, the product of Cx and Lres (Lx and Cst) should be less than 0.25 x 10^{-12} . The relationship between the residual factors of the test jig and measurement accuracies are graphically shown in Figure 3-4.

The 4262A ZERO ADJ controls cover the following capacitance and inductance offset adjustment ranges:

C ZERO ADJ: up to 10pF
L ZERO ADJ: up to
$$1\mu$$
H

An offset adjustment should always be performed before measurements are taken.

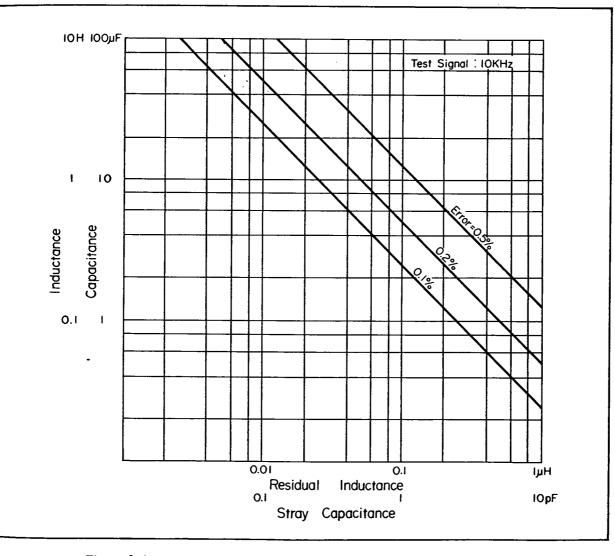


Figure 3-4. Measurement Error due to Misadjusted ZERO ADJ Controls.

Section III Figure 3-4

Measurement Parameter Conversions

Parameter values for a component measured in a parallel equivalent circuit and that measured in series equivalent circuit are different from each other. For example, the parallel capacitance of a given component is not equal to the series capacitance of that component. Figure A shows the relationships between parallel and series parameters for various values of D. Applicable diagrams and equations are given in the chart. For example, a parallel capacitance (Cp) of 1000pF with a dissipation factor of 0.5, is equivalent to a series capacitance (Cs) value of 1250pF at 1kHz. As shown in Figure A, inductance or capacitance values for parallel and series equivalents are almost identical when the dissipation factor is less than 0.01. The letter D in Figure A represents dissipation factor and is calculated by the equations presented in Table A for each circuit mode. The dissipation factor of a component always has the same dissipation factor at

a given frequency for both parallel equivalent and series equivalent circuits.

Note

Dissipation factors displayed when CIRCUIT MODE is switched between PRL and SER may exhibit slight differences due to the measurement accuracy of the 4262A.

The reciprocal of the dissipation factor (D) is quality factor (Q) and D is often represented as tan δ which is the tangent of the dissipation angle (δ). Figure 3-6 is a graphical presentation of the equations in Table A. For example, a series inductance of 1000μ H which has a dissipation factor of 0.5 at 1kHz has a series resistance of 3.14 ohms.

Table A. Dissipation I	Factor Ec	uations.
------------------------	-----------	----------

Cire	cuit Mode	Dissipation Factor	Conversion to other modes
Cp mode		$D = \frac{1}{2\pi f C p R p} \left(= \frac{1}{Q}\right)$	$Cs = (1 + D^2)Cp, Rs = \frac{D^2}{1 + D^2} \cdot Rp$
Cs mode	Cs Rs 	$D = 2\pi f C s R s \ (= \frac{1}{Q})$	$Cp = \frac{1}{1+D^2} Cs, Rp = \frac{1+D^2}{D^2} \cdot Rs$
Lp mode	- [³⁶] ²	$D = \frac{2\pi f L p}{R p} \ (= \frac{1}{Q})$	$Ls = \frac{1}{1+D^2} Lp, Rs = \frac{D^2}{1+D^2} \cdot Rp$
Ls mode	Ls Rs -787-+++-	$D = \frac{Rs}{2\pi fLs} (= \frac{1}{Q})$	$Lp = (1 + D^2)Ls, Rp = \frac{1 + D^2}{D^2} Rs$

Figure 3-5. Conversion Between Parallel and Series Equivalents.

27.7 Jan 14

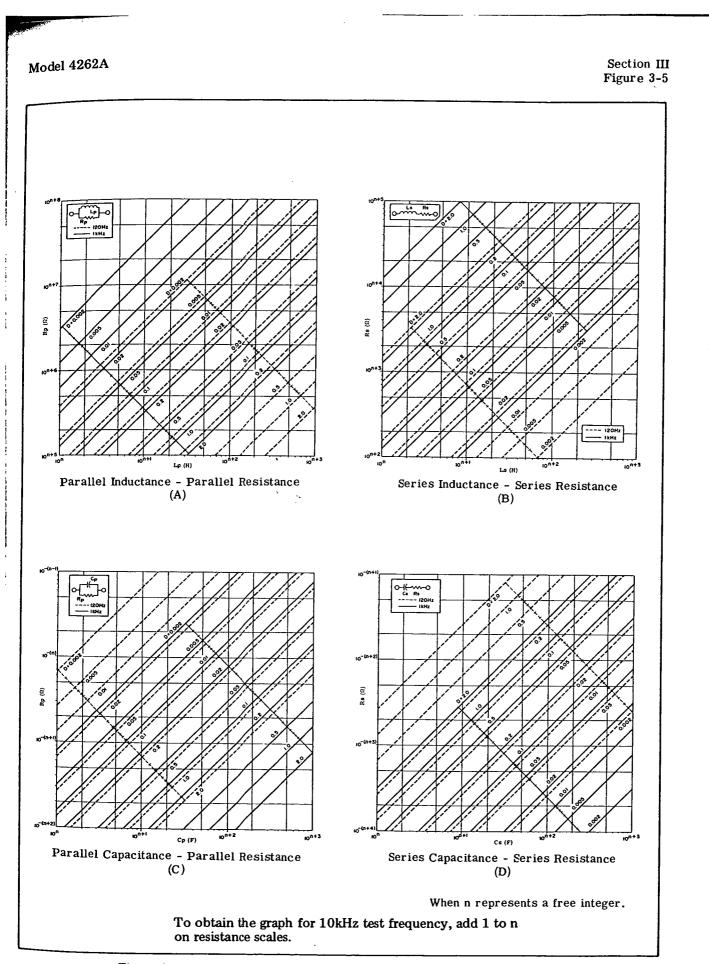
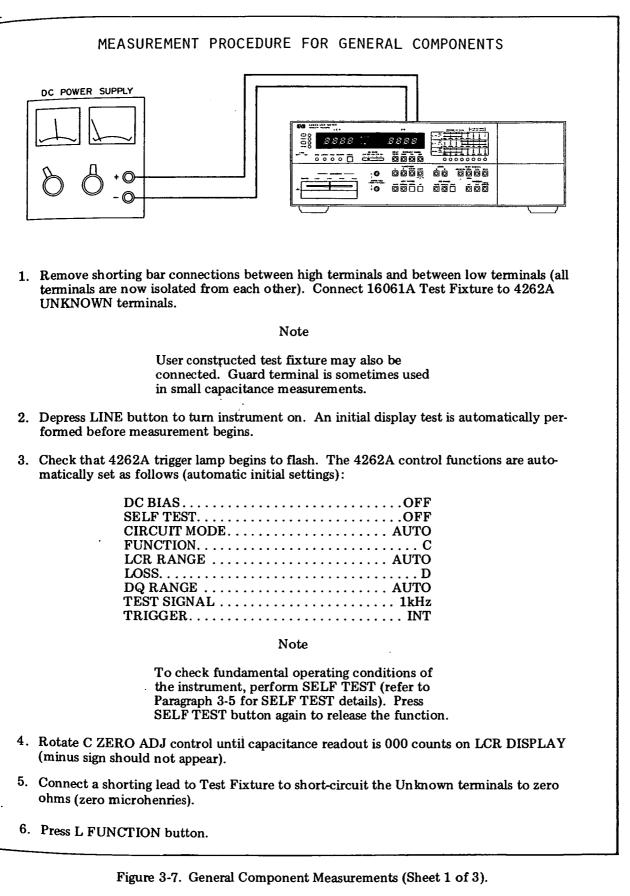


Figure 3-6. Relationship of Dissipation to Series and Parallel Resistance.

3-13



Section III Table 3-3 Model 4262A

	Table 3-3.	Annunciation	Display	Meanings.
--	------------	--------------	---------	-----------

DISPLAY	Indicated Condition	Action
$\frac{1}{10000000000000000000000000000000000$	FUNCTION has been inappro- priately set.	Change 4262A FUNCTION to L, C or R suitable for the sample being measured.
	Measured L or C value exceeds 1999 counts. DQ display indicates that DQ measurement has been omitted.	Set 4262A to: CIRCUIT MODE: AUTO LCR RANGE: AUTO
0 - F	Measured R value exceeds 1999 counts.	Try changing TEST SIGNAL to 120, 1k or 10kHz.
(any LCR (overflowed) reading)	Measured D/Q value exceeds the upper range limit (1999 counts). Accuracy of LCR readings may not be within specifications.	Set 4262A DQ RANGE to AUTO. Try changing TEST SIGNAL to 120, 1k or 10kHz.
U - C L "" "	CIRCUIT MODE setting is not suitable for the sample being measured.	Set 4262A to: CIRCUIT MODE: AUTO LCR RANGE: AUTO
	Measured L, C or R value is ex- tremely large or small compared with the selected range.	Try changing TEST SIGNAL to 120, 1k or 10kHz.
78	When Measured L or C value is less than 80 counts, DQ measurement is omitted.	Set 4262A LCR RANGE to AUTO. Try changing TEST SIGNAL to 120, 1k or 10kHz.
(any DQ reading)	In \triangle LCR measurement, the differ- ence between the preset value and the measured value of the sample exceeds -999 counts.	
	In \triangle LCR measurement, the cal- culated difference exceeds -999 counts. In addition, the value of measured sample is less than 80 counts.	
Minus (-) is displayed.	Minus display sometimes occurs when sample having a value around zero is measured.	Zero count display is meaning- ful when minus (-) display repeatedly turns on and off.
	Sometimes a minus display occurs when a capacitor (or inductor) is measured in L (or C) FUNCTION.	Change to appropriate FUNCTION.
	Offset adjustment signal applied is too great (causes minus display).	Readjust offset signal for proper magnitude.

3-15

Section III Figure 3-6 7. Rotate L ZERO ADJ control until inductance readout is 000 counts on LCR DISPLAY. Note To achieve more critical zero adjustments, when 10kHz test signal frequency is used, perform the capacitance and inductance zero offset adjustments (steps 4, 5, 6 and 7) at 10kHz. 8. Remove shorting lead from 16061A. 9. Select desired FUNCTION, either L, C or R/ESR. 10. Connect sample to be measured (L, C or R) to Test Fixture. 11. Model 4262A will automatically display value of unknown. Note If O-F, U-CL, minus (-) or blank display occurs, see Table 3-3 for solution. Measured values for semiconductor devices are sometimes unreliable when TEST SIGNAL LOW LEVEL pushbutton is in its normal (1V) state (button lamp is not lit). In these instances, follow Figure 3-8 for semiconductor device measurement. Note If manual triggering is required, press HOLD/ MANUAL button. Each time the button is pressed, the instrument is triggered. 12. If internal DC bias is required, set DC BIAS switch to 1.5V, 2.2V or 6V: If not, OFF position should be selected. Note DC bias application may only be used for capacitance measurements. CAUTION POSITIVE POLE OF ELECTROLYTIC CAPA-CITOR MUST BE CONNECTED TO HIGH TERMINALS AS PLUS BIAS VOLTAGE IS APPLIED TO HIGH TERMINALS WITH RE-SPECT TO LOW TERMINALS. Note An external bias voltage up to +40V may be applied to EXT DC BIAS rear panel connector. Connect DC power supply to EXT DC BIAS connector. Set DC BIAS switch to EXT. 3-16

Section III Figure 3-6

CAUTION

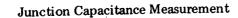
EXTERNAL DC BIAS AT EXT BIAS CON-NECTOR MUST NEVER EXCEED +40V.

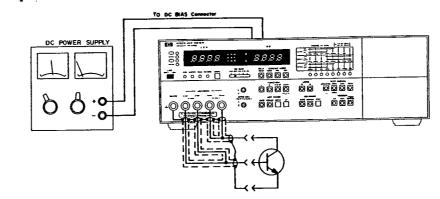
13. Read measured value on display.

Note

It is usually recommended that the LCR RANGE be set to MANUAL and to hold the range when measuring multiple samples having almost the same value. Range hold operation will somewhat shorten measurement time.

Note


Series resistance of electrolytic capacitors, inductors or transformers can be measured in series R/ESR measurement mode. In these cases, the number of digits is sometimes reduced. On the other hand, resistance can, of course, be indirectly measured with the C/L FUNCTION and calculated from one of the following equations:


 $\begin{aligned} & \text{Rs} = D/\omega \text{Cs} \text{ (Cs-D measurement)} \\ & \text{Rs} = \omega \text{Ls} \cdot D \text{ (Ls-D measurement)} \\ & \text{Rs} = \omega \text{Lp} \cdot \frac{D}{1 + D^2} \text{ (Lp-D measurement)} \end{aligned}$

The above relationships are graphically shown in Figure 3-6.

Figure 3-7. General Component Measurements (Sheet 3 of 3).

The figure above is a typical test setup used for measuring base-collector junction capacitance (Cob) of an NPN transistor. For this measurement, test leads or fixture may be user designed. If external DC bias is not necessary, arrangement and procedures associated with this function may be deleted from setup.

Procedure -

Setup-

1. Press LINE button to turn instrument on. After the initial display test, trigger lamp will begin to flash and the 4262A functions are automatically set as follows:

SELF TEST	OFF
CIRCUIT MODE	AUTO
FUNCTION.	C
LCR RANGE	AUTO
LOSS	D
DQ RANGE	AUTO
TEST SIGNAL	1kHz
TRIGGER	1NT

2. Press TEST SIGNAL LOW LEVEL and PRL CIRCUIT MODE buttons. The test signal level is now 50mV and the parallel equivalent circuit mode is selected.

Note

A semiconductor junction capacitance measurement must be made with a low level test signal. If desired, TEST SIGNAL fequency may be set to 10kHz.

3. Adjust C ZERO ADJ control for zero counts on LCR DISPLAY.

Note

If necessary, apply DC bias voltage internally or externally at rear panel EXT DC BIAS connector. External DC bias source should be stable with low noise. Set DC BIAS switch in EXT position during application of external DC bias.

Figure 3-8. Semiconductor Device Measurement (Sheet 1 of 2).

CAUTION

NEVER APPLY AN EXTERNAL DC BIAS OVER +40V.

4. Connect Semiconductor device to test lead or to fixture. To obtain reliable measurement results, observe the following:

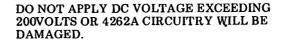
Note

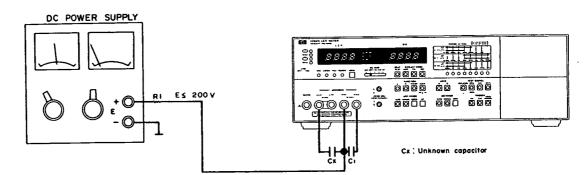
- a. It is impossible to measure junction capacitance when bias current flows through sample.
- b. If lead length of device allows, it is recommended that the device be connected directly to UNKNOWN terminals.
- 5. Read displayed values. Loss factor of the sample will be simultaneously displayed on DQ DISPLAY.

Note

When using manual trigger, press HOLD/MAN-UAL button. Each time the button is pressed, the instrument is triggered. When measuring multiple samples whose values are about the same, it is recommended that the LCR RANGE be set to MANUAL and that the range be held.

Parameter Measured	Connections to 4262A
Base-collector junction capacitance (Cob)- Emitter current = 0	Low (+Bias) Open
Base- collector junction capacitance (Cre)- Common emitter	GUARD GUARD
FET gate capacitance	High (+Bias) S High (+Bias) Low S Open High (+Bias) Copen High (+Bias) Copen S Open High (+Bias) Copen S High (+Bias) Copen S High (+Bias) Copen S High (+Bias) S Open S High (+Bias) S Open S High (+Bias) S Open S High (+Bias) S Open S Cop
Diode junction capacitance Note: Hot carrier diodes and germanium diodes sometimes cannot be measured.	High Low Low High Note: No bias should be applied.


Figure 3-8. Semiconductor Device Measurement (Sheet 2 of 2).



External DC Voltage Bias Circuits (40V < , < 200V)

1. Connect external dc bias source as shown in diagram.

CAUTION

Note

+E voltage is applied to Cx in figure. -E voltage can be applied to Cx in this figure. In the above arrangement, the polarity of Cx and C1 must be taken into consideration.

CATUION

NEVER SHORT BETWEEN HPOT AND LOW TERMINALS WHEN R1 IS SMALLER THAN $1k\Omega$. MAKE SURE THAT UNKNOWN CAPACITOR IS NOT DEFECTIVE BEFORE CONNECTING TO INSTURMENT.

TO AVOID HARMFUL SURGE CURRENT WHICH MAY FLOW THROUGH INTERNAL CIRCUITRY WHEN A HIGH VOLTAGE DC BIAS IS SUDDENLY APPLIED, IT IS RECOM-MENDED THAT DC BIAS BE GRADUALLY INCREASED FROM A LOWER VOLTAGE.

Note

Ripple or noise of external dc bias source should be as low as possible. The low frequency noise of bias source should be less than 1mVrms for a TEST SIGNAL level of 50mV (LOW LEVEL) and 30mVrms for 1V.

Figure 3-9. External DC Bias Circuit (Sheet 1 of 3).

2. Minimum values for both C1 (dc blocking capacitor) and R1 are given in table below:

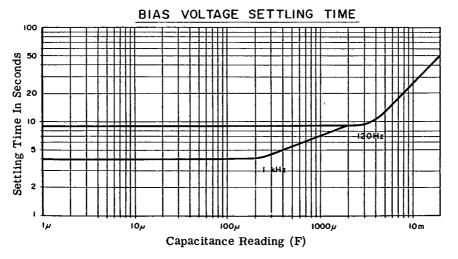
Note

Insulation resistance for Cx must be greater than a certain minimum value. Refer to Table 3-4 for unusual operating indications.

Range (at 120Hz)	1000pF	10.00nF	100.0nF	1000nF	10.00µ F
Minimum C1	0.01µF	$0.1 \mu F$	1µF	10µF	10.00µF
Minimum R1	300kΩ	100kΩ	10kΩ	1kΩ	100Ω

In 1kHz(10kHz) measurement, multiply both range value and value of C1 by 1/10 (1/100). If the calculated value of C1 is less than 0.01μ F, use 0.01μ F capacitor.

Note


DC withstand voltage for C1 capacitor must be greater than dc applied voltage E. Also observe polarity of capacitor C1 with respect to applied voltage.

3. Set 4262A controls as follows:

SELF TEST																			•	01	FI	7	
FUNCTION													•				• •				0	3	
CIRCUIT MODE.																							
Other controls	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	a	ny	7	se	tti	in	g	

4. Read displayed value after allowing time for bias voltage to settle. Typical settling times are:

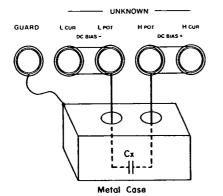
120Hz:	6 to 7 seconds.
1kHz/10kHz:	2 to 3 seconds.

If C1 and R1 which are larger than those given in table on above are connected, longer settling times are necessary.

Figure 3-9. External DC Bias Circuit (Sheet 2 of 3).

3-21

ng Current Bias (for inc 1. Connect dc power		nown below	' :			
1. Connect de power	ouppij an a		-			
		Note				
	power supp				l.	
pov shi	able betwee wer supply i elded cable. ted to GUA	s relatively The outer	long, it sho conductor i	uld be		
	TO DC BIAS C	onnector				-0- 2
					_	_ 0 , 0
SSSS ::: SSSS SSSS SSSS ::: SSSS SSS SSS SSSS SSS SSS SSS SSS SSS SSS SSS SSS	1					DC POWER S $-0+$ $-0-$ $-0-$
FUNCT CIRCUI LCR RA	s as follows S ION T MODE ANGE ontrols		PR	L or SER ANUAL	e.	
		Note				
ing	rst, determi g sample wit en hold the ductance ran	h no dc bia range.	s current ap	plied.	are:	
Range (at 120Hz)	1000 µH	10.00 mH	100.0 mH	1000 mH	10.00 H	100.0 H
CIRCUIT MODE		SER			PARA	·
Maximum Bias Current*	40m A	36m A	13mA	40m A	36m A	13mA
*Bias current v	vhen +40V is	applied to l	DC BIAS coi	nnector.		•
In 1kHz(10kH	z) measurem	ent, multiply CAUTIO		e by 1/10 (1	L /100) .	
				OT BE AP-		


Figure 3-9. External DC Bias Circuit (Sheet 3 of 3).

- al - Ellow De

Section III Table 3-4

Table 3-4. Unusual Operating Indications (Sheet 1 of 4).

ndication:	Cause of trouble:
 A. Same sample sometimes shows quite different values between PRL and SER CIRCUIT MODE measurements. B. The decimal point moves and measure- ment unit changes. 	A and/or B may occur in the following case Resistance of low loss inductor or capacitor being measured in R FUNCTIO Inductance of lossy inductor or capacitant of lossy capacitor being measured in L C FUNCTION.
	What to do:
	 A. Do not set CIRCUIT MODE to AUTO. Set CIRCUIT MODE to a PRL or SER setting that shows a valid display. B. Set LCR RANGE to MANUAL. Manually settle the instrument on an appropriate range.
ndication:	Cause of trouble:
The displayed value fluctuates on minimum capacitance, maximum inductance or maximum resistance ranges in either PRL SER circuit modes.	 Here are some of the reasons why this happens: A. A large size sample is being measured B. A high voltage power line or similar exists near the 4262A. C. The 4262A and sample are connected together with relatively long,

What to do:

,

- 1. Enclose sample in metal case. Connect case electrically to 4262A GUARD terminal as illustrated.
- 2. Use shielded cable for connection between sample and the instrument. Connect cable shield to GUARD.

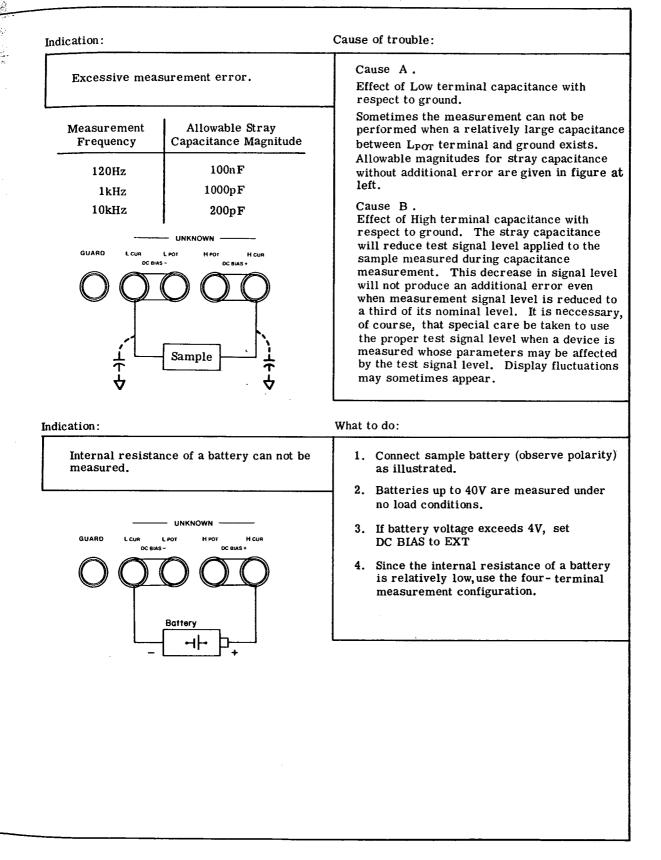
Section III Table 3-4

Table 3-4.	Unusual	Operating	Indications	(Sheet 2 of 4)	1.
14010 0 1.	onabaai	operating	multations	(DILCCL Z UL T)	

lication:	Cause of trouble:
When measuring a low impedance (small inductance, resistance or high capacitance), measurement error is excessive.	 Excessive residual impedance(inductance capacitance or resistance) of test leads in a two terminal measurement. Mutual test lead induction between current leads (H_{CUR} and L_{CUR}) and potential leads (H_{POT} and L_{POT}).
	What to do:
0 9 9 9	Use test leads in four-terminal con- figuration and measure.
	Twist current leads (H_{CUR} and L_{CUR}) togethe Do the same with potential leads (H_{POT} and L_{POT}).
	Additional error is presented as $\omega^2 LrCx X 100$ (%) for C measurement, where:
AA	$\omega = 2\pi f$ f = test frequency Lr = residual inductance Cx = unknown capacitance

Indication: C	Cause of trouble:					
	Measurement	Cause of error				
Measurement error is excessive when high impedance (high inductance, small capacitance) is measured.	High Inductance	Stray capacitance between High and Low leads.				
	Small Capacitance	Stray capacitance between High and Low leads.				

What to do:


Use shielded cable for connection between sample and 4262A UNKNOWN terminals. Connect outer conductor to GUARD terminal.

e

Adjust C ZERO ADJ control properly to compensate for stray capacitance.

Section III Table 3-4

Table 3-4. Unusual Operating Indications (Sheet 3 of 4).

Section III Table 3-4

Table 3-4. Unusual Operating Indications (Sheet 4 of 4).

When a sample (for example, an iron core inductor) is measured in AUTO of CIRCUIT MODE, the instrument repeats range selection and does not complete the meas- urement depending upon level of test current used.				The measurement reading of sample depends on the level of measurement test signal applied.			
				/hat to do:			
				Manually	ANGE to M. settle the in riate range.	strument on	
cation:							
When a capac	tor is n ed, an at	neasured with bnormal displ	dc bias ay occurs.	insulation	resistance of	to the permi of a capacito 5. See table	r
When a capac	citor is n ed, an ab	neasured with phormal displ	dc bias ay occurs.	insulation	resistance (with dc bias	of a capacito:	r
When a capac	ed, an ak	neasured with onormal displ	dc bias ay occurs.	insulation	resistance (with dc bias	of a capacito:	r
When a capac voltage appli	ed, an ak	neasured with bnormal displ	dc bias ay occurs. 1000pF	insulation measured RANGE 10.00nF	resistance of with dc bias	of a capacito 5. See table 1000nF	r
When a capac voltage appli	ed, an ak	bnormal displ	ay occurs.	insulation measured RANGE	resistance of with dc bias	of a capacito: 5. See table	r

Ri given in above table is applicable for a dc bias of 40 V. When the bias voltage is less than 40 V, Ri limit is RiVb/40 (Ω) where Ri is value given in the table and Vb is applied dc bias voltage.

340. OPTION OPERATION.

3.41. Operating instructions for Options 001, 004, and 101 are described in the following paragraphs.

342. OPTION 001: BCD PARALLEL DATA OUTPUT.

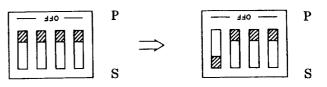
3-42. The 4262A Option 001 provides parallel BCD outputs for LCR display, D/Q display and information for various control settings. These outputs are fed to two 50 pin connectors on the rear panel.

3-44. Output Data and Pin Assignment.

3.45. The 4262A Option 001 provides eight kinds of output data:

- (1) FUNCTION and CIRCUIT MODE.
- (2) Test Signal Frequency (LOW LEVEL or normal is excluded).
- (3) Annunciator: Normal, Overflow, Uncal, (LCR and D/Q are not annunciated).
- (4) Unit: p, n, μ , m, k, M, D, Q (judgement whether capacitance, inductance or resistance depends on output of FUNCTION switch setting information).
- (5) Decimal Point.
- (6) Polarity.
- (7) Displayed value.
- (8) Other Input/Output Signals.

The signal pin assignments for the 50 pin connector are shown in Figure 3-40. When these signals are fed to digital printer, the print-out is given as a 10 digit decimal number.

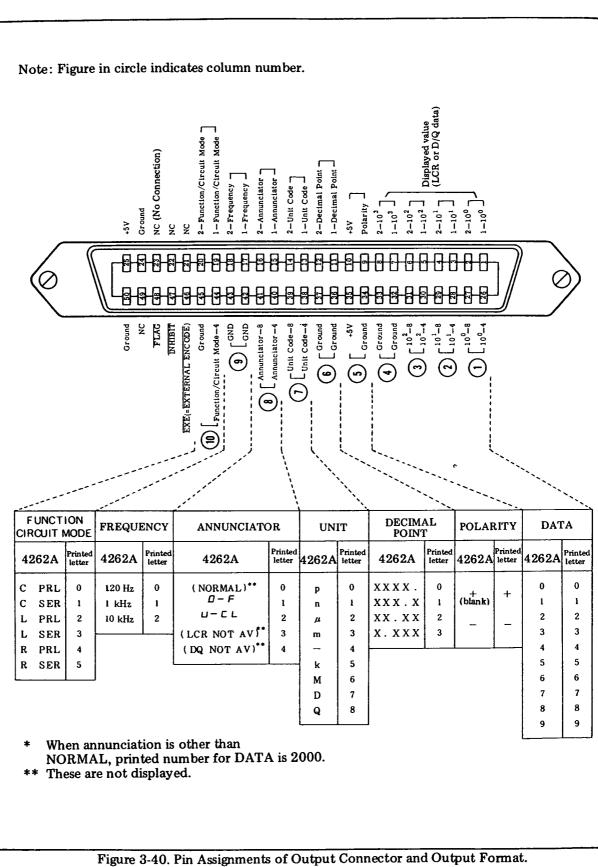

3-46. Alternate Output of LCR and D/Q Data.

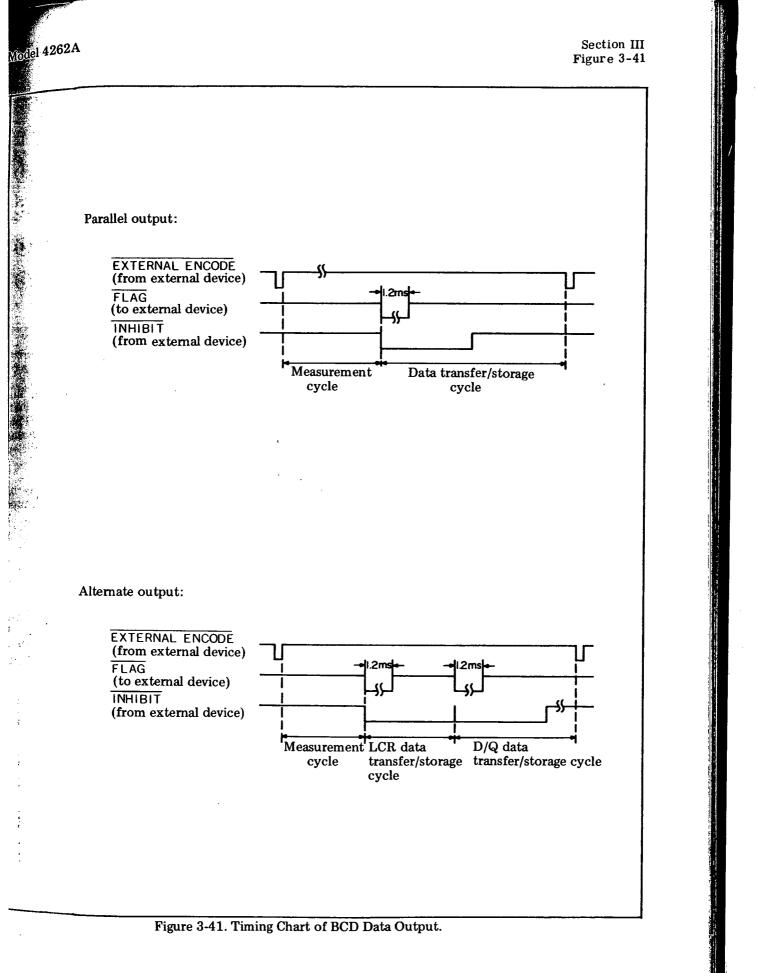
BCD outputs for LCR and D/Q data of 4262A Option 001 can be alternatively supplied through one 50 pin BCD LCR DATA OUTPUT connector on rear panel. This alternate output is enabled by changing slide switch setting on printed circuit board P/N 04262-66535. PC board 04262-66535 is located nearest to the rear panel in the right hand row of PC boards. Normal setting of the four section slide switch for parallel output and the setting for alternate output are illustrated below.

Normal

Parallel output:

Alternate output:




3-47. Output Timing.

3-48. Timing charts for parallel (simultaneous) output and alternate output are shown in Figure 3-41.

2A

Model 42624

Section III Paragraphs 3-49 to 3-51

3-49. OPTION 004- COMPARATOR.

3-50. The 4262A Option 004 (shown in Figure 3-43) provides:

- (a) HIGH and LOW limits setting for comparison of LCR and D/Q measured data.
- (b) LED visual decision output lamps display of results of HIGH and LOW limit comparisons.
- (c) TTL outputs and relay outputs for HIGH, IN, and LOW decision outputs.
- 3-51. Front Panel Features (Figure 3-42).
 - (1) LCR LIMIT Switch: Two four-digit switches provide HIGH and LOW limit values with which measured LCR value is compared. Setting range is from 0000 to 1999.
 - (2) LCR Decision Output Lamp: Results of comparison are indicated by LED lamps as follows:

HIGH: (measured value ≥ High limit) IN: (Low limit ≤ measured value < High limit) LOW: (measured value < Low limit)

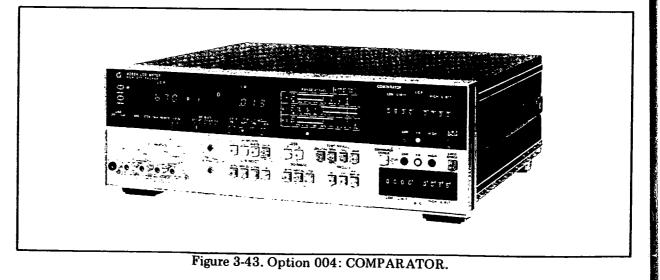

(3) LCR LIMIT CHECK Switch: While this switch is depressed, HIGH and LOW limit values set by LCR LIMIT switches (1) are displayed in LCR and D/Q displays. During this period, three LCR decision output lamps are lit. Comparator must be enabled display limits. COMPARATOR LOW LIMIT COMPARATOR LIMIT LIMIT

Figure 3-42. Front Panel Features

- (4) D/Q LIMIT CHECK Switch: While this switch is depressed, HIGH and LOW limit values set by D/Q LIMIT switches (6) are displayed in LCR and D/Q displays. During this period, three D/Q lamps of decision outputs are lit.
- (5) D/Q Decision Output Lamp: Results of comparison is indicated by LED lamps as follows:

HIGH:(measured value ≥ High limit) IN: (Low limit ≤ measured value < High limit) LOW: (measured value < Low limit)

(6) D/Q LIMIT Switch: Two four-digit switches provide HIGH and LOW limit values with which measured D/Q value is compared. Setting range is from 0000 to 1999.

Model 4262

7) COMPARATOR ENABLE Switch: This switch enables the Option 004 to compare measured data with HIGH and LOW limits under a fixed range condition (LCR or D/Q RANGE switch set to MANUAL). If LCR RANGE switch or D/Q switch is set to AUTO, depressing COMPARATOR EN-ABLE switch changes LCR or D/Q RANGE switch setting to MANUAL.

If AUTO key of LCR or D/Q RANGE switch is depressed while COMPARATOR ENABLE switch is ON, one measurement cycle is done in AUTO ranging and the range is fixed to that selected in this measurement cycle.

.3-52. LIMIT Setting Warning: If HIGH LIMIT setting is lower than LOW LIMIT setting, HIGH and LOW lamps of decision output repeatedly turn ON and OFF to warn operator to change LIMIT setting.

3-53. DATA OUTPUT Connector Decision Output: Decision outputs in TTL open collector signal and in relay contact are supplied through COMPARA-TOR OUTPUT connector on the rear panel. Signal pin assignment is given in Figure 3-44. Section III Paragraphs 3-52 and 3-53

Relay	Contac	et	Ratings	
-------	--------	----	---------	--

	AC	DC
Contact Resistance	100mΩ	100mΩ
Maximum Permissible Power	30VA	20W
Maximum Permissible Voltage	110V	30V
Maximum Permissible Current	0.3A	1A
Actuation Life	>10 million	>1 million

Decision Output Data Format

Decisions	Rela	y outpu	t pins	TTL output pins			
Decisions	DQ LCR 13 17	DQ LCR 14 18	DQ LCR 39 43	DQ LCR 15 19	DQ LCR 16 20	DQ LCR 41 45	
HI	S	ο	ο	н	L	L	
IN	0	0	S	L	L	н	
LO	0	S	0	L	Н	L	

S: Short O: Open

Referenced to common (pin 38 or 42). TTL Output sink current: 30mA max.

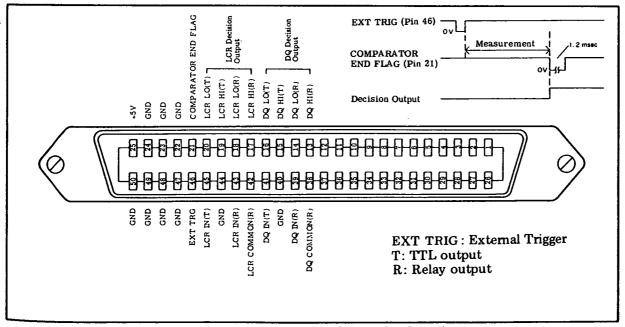


Figure 3-44. Comparator Data Output Pin Locations.

SectionIII Paragraphs 3-60 to 3-67

3-60. OPTION 101: HP-IB.

3-61. The 4262A Option 101 provides interface capabilities in accordance with IEEE-STD-488-1975 recommendations.

3-62. Connection to HP-IB Controller: The 4262A Option 101 can be connected to an HP-IB Controller (HP calculator) via HP-IB digital bus connector on the rear panel of the 4262A and the bus connector of the Bus I/O card installed in calculator.

3-63. HP-IB Status Indicator: The four LED lamps of the HP-IB Status Indicator (located below the LCR display) show which HP-IB condition the 4262A is in:

- SRQ: SRQ signal put on HP-IB line from 4262A. See paragraph 3-70 for details.
- LISTEN: 4262A is set to listen. See paragraph 3-69 for details.
- TALK: The 4262A is set to talk. See paragraph 3-67 for details.
- Remote: The 4262A is remotely controlled. See paragraph 3-71 for details.

3-64. LOCAL Switch: This switch disables remote control and enables setting measurement conditions by front panel controls (pushbutton switches). REMOTE lamp of HP-IB status indicator turns off when LOCAL switch is depressed. (When Local Lock Out does not function).

3-65. HP-IB INTERFACE CAPABILITIES: The 4262A Opt 101 has the following eight bus interface functions:

- SH1: Source Handshake Capability.
- AH1: Acceptor Handshake Capability.
- T5: Talker (the 4262A sends measurement data to the bus).
- L5: Listener (the 4262A receives remote control signals from the bus).
- SR1: Service Request Capability.
- RL1: Remote/Local Capability.
- DC1: Device Clear Capability.
- DT1: Device Trigger Capability.
- **3-66.** Source and Acceptor Handshake: SH1, AH1.

Three Bus handshake lines (DAV, NRFD and NDAC) perform Source and/or Acceptor hand-shake functions.

- (1) DAV (DAta Valid). DIO (Data Input Output) line is available.
- (2) NRFD (Not Ready For Data). Listener preparation for receiving data from Talker is not yet completed.
- 3-32

(3) NDAC (Not Data Accepted). Listener has not yet received data from Talker.

3-67. Talker Capability: T5.

When set to Talker by MTA (My Talk Address) signal from controller, the 4262A sends measure. ment data to the Bus in one of three types of out. put formats:

Type A: Ordinary output format. Address switch on the rear panel set to FMT A.

S FC F	-NN. NNE-NN	<u>, s F</u>	N.NNN	CRLF
(1) (2) (3)	(4)	(5)(1)(6)	(7)	(8)

- Type B: Output format used for Model 5150A HP-IB Digital Recorder. Address switch on the rear panel set to FMT B.
 - $\frac{S}{(1)} \frac{FC}{(2)} \frac{F}{(3)} \frac{-NN. NNE-NN}{(4)} \frac{C'RLF}{(8)} \frac{S}{(1)(6)} \frac{F}{(7)} \frac{N. NNN}{(8)} \frac{CRLF}{(8)}$
- Type C: Output format used in resistance measurement or LCR ONLY measurement when no D/Q data is to be outputted. Selection of this format is automatically done in accordance with FUNCTION switch setting
 - <u>S FC F -NN. NNE-NN CRLF</u>
 - $\overline{(1)}$ $\overline{(2)}$ $\overline{(3)}$ $\overline{(4)}$ $\overline{(8)}$

The numbered elements of output data are described below:

(1) Status:

N	Normal
0	Overflow
	Uncal
X	LCRNA or DNA
	(NA: Not Available

(2) Function and Circuit Mode:

FUNCTION	MEASURE- MENT	CIRCUIT MODE
CP CS LP LS RP RS	C C L R R/ESR	PRL SER PRL SER PRL SER

(3) Frequency:

A	120Hz (100Hz)
B	1kHz
C	10kHz

- (4) LCR Data(5) Data Delimiter
- (6) Loss

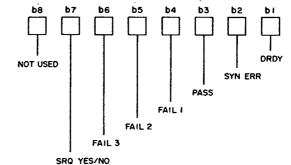
D..... Dissipation Factor measurement Q..... Quality Factor measurement

- (7) DQ Data
- (8) Data Terminator
- 3-68. Functions Related to Talker Capability.
 - EOI (End Or Identify): When multiple byte data of Source Handshake has been sent, the 4262A provides EOI to the bus.
 - Talk Only Mode: When ADDRESS switch is set to TALK ONLY "1" position, the 4262A is set to Talker regardless of address code.

- Talk Address Disabled by Listen Address: MTA (My Talk Address) is automatically disabled when MLA (My Listen Address) is set. MTA (My Talk Address) is otherwise disabled by IFC (Interface Clear) signal, OTA (Other Talk Address) signal or UTA (Untalk Address) signal.
- 3-69. Listener Capability: L4.

To receive Remote Program signal or Addressed Command signal, the 4262A is set to Listener by an MLA (My Listen Address) signal from the bus.

- (1) Remote Program signal: Remote program codes for the 4262A are listed in Table 3-60.
- (2) Addressed Command signal: When the 4262A receives command signals GET, GTL, or SDC, it is set to Listener and controlled by command signals. These command signals are valid regardless of the status (remote or local).
 - GET (Group Execute Trigger): When the 4262A receives this command, it is triggered regardless of front panel TRIG-GER switch setting.
 - GTL (Go to Local). The 4262A is set to LOCAL by this command to enable front panel control.


CPB + 12.34E-9, ND $\emptyset \phi \phi / CR LFi$ Section III Paragraphs 3-68 to 3-70

> SDC (Selected Device Clear): When this command is accepted, front panel controls are set to initial conditions (the same conditions that are automatically set after turn-on of power switch).

Listen status is automatically disabled when MTA (My Talk Address) is received. Listen status is otherwise disabled by IFC (Interface Clear) signal or ULA (Unlisten Address) signal.

3-70. Service Request Capability: SR1.

The 4262A sends an SRQ (Service Request) signal whenever it is set in one of the six possible RQS (Request Status) states. It does this by responding to a serial poll of the controller by setting an STB (Staus Byte) signal on the bus. The 7th bit of this 8 bit signal establishes whether or not a service request exists. The remainder of the 8-bit signal identifies the character of the SRQ.

SRQ (Service Request) is disabled when RQS (Request Status) or STB (Status Byte) is set to 00000000 or when STB (Status Byte) signal transfer is completed.

Request Statuses (RQS) of the 4262A:

- (1) DRDY (Data ReaDY): When the 4262A completes a measurement cycle, this status bit is set. This status is set without serial polling if NOT DATA READY is set.
- (2) SYN ERR (SYNtax ERRor): When the 4262A receives an erroneous Remote Program Code which is not listed in Table 3-60, this status bit is set.
- (3) PASS (Self Test Pass): When PASS is displayed in Self Test done by remote control, this status bit is set.
- (4) FAIL 1 (Self Test Fail 1): When FAIL 1 is displayed in Self Test done by remote control, this status bit is set.
- (5) FAIL 2 (Self Test Fail 2): When FAIL 2 is displayed in Self Test done by remote control, this status bit is set.
- (6) FAIL 3 (Self Test Fail 3): When FAIL 3 is displayed in Self Test done by remote control, this status bit is set.

Section III Table 3-60

Table 3-60. Remote Program Codes.

Model 4262A

	co	ONTROL		Program Code
Function	L			F 1
	c			F 2
	R/ES	3R		F 3
Circuit Mode	AUTO)		C 1
	PRL			C 2
	SER			C 3
Loss	D	Ň		L 1
	Q			L 2
Frequency	120 H	2		H 1
	1 kHz			H 2
	10 kH	z		Н 3
Trigger	INT			T 1
	EXT			T 2
· · · · · · · · · · · · · · · · · · ·	HOLD	/MANU	AL	Т 3
Self Test	OFF			S 0
	ON			S 1
△LCR	OFF			M 0
	ON			M 1
Cp Low Level	OFF			P 0
	ON			P 1
*Data Ready	OFF			D 0
RQS Mode	ON			D 1
	(C)	(L)	(R)	
LCR Range	100 p	100 µ	1000 m	R 1
at 1 kHz	1000	1000	10	R 2
	10 n	10 m	100	R 3
	100	100	1000	R 4
	1000	1000	10 k	R 5
	10 µ	10	100 k	R 6
	100	100	1000 k	R 7
	1000		10 M	R 8
	— 1	auto —		R 9
DQ Range	(D)		(Q)	
	—	1	000	N 1
	—	1	00.0	N 2
	10.00	J	0.00	N 3
	1.000	1	.000	N 4
		auto —		N 5

Section III Table 3-61

			8				
		CLASS	D D I I O O 8 7 6 5 4 3 2 1				
DCL	device clear	UC	X 0 0 1 0 1 0 0				
GET	group execute trigger	AC	X 0 0 0 1 0 0 0				
GTL	go to local	AC	X 0 0 0 0 0 1				
LLO	local lock out	UC	X 0 0 1 0 0 0 1				
MLA	my listen address	AD	X 0 1 L L L L L 5 4 3 2 1				
МТА	my talk address	AD	X 1 0 T T T T T 5 4 3 2 1				
ΟΤΑ	OTA other talk address AD		$(OTA = TAG \int MTA)$				
SDC	selected device clear	AC	X 0 0 0 0 1 0 0				
SPD	serial poll disable	UC	X 0 0 1 1 0 0 1				
SPE	serial poll enable	UC	X 0 0 1 1 0 0 0				
STB	status byte	ST	SXSSSSSS				
UNL	unlisten	AD	X 0 1 1 1 1 1 1				
UNT	untalk	AD	X 1 0 1 1 1 1 1				
CLAS	CLASS UC: Universal Command AC: Addressed Command AD: Address ST: Status Byte						

Table 3-61. Remote Message Coding.

Section III Paragraphs 3-71 to 3-75

3-71. Remote/Local Capability: RL1.

The 4262A goes to Remote Status only when it accepts Listen address with REN (Remote Enable) line in the Bus lines set to "1". Remote status is not obtained if REN line is set to "1" after Listen address is received. Remote status is returned to Local status when one of following conditions is present:

- (1) REN line is set to "0".
- (2) LOCAL switch on front panel is depressed.
- (3) GTL (Go To Local) command is received.

Local Lock Out: LLO

Local Lock Out inhibits the function of LOCAL switch. This LLO command is a universal command and is valid when REN line is set to "1". LLO command is disabled when REN line is set to "0"

3-72. Device Clear Capability: DC1.

The 4262A is set to initial conditions (the same conditions that are automatically set after turn-on of power switch), when it accepts DCL (Device CLear) command—universal command—or SDC (Selected Device Clear)—addressed command.

3-73. Device Trigger Capability: DT1.

The 4262A is triggered regardless of TRIGGER switch setting when it accepts GET command—ad-dress command.

3-74. ADDRESS Switch: ADDRESS switch on the rear panel sets Listen/Talk address. Five section or five bit switch provides 30 settings from 00000 to 11110.

АЭ	A 4	A 3	ΑZ	AI	
0	0	0	0	0	 0
		l			ł
1	1	1	1	0	 30

3-75. Remote Message Coding: Interface Bus Command signals for the 4262A are listed in Table 3-61.

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION.

4-2. This section provides the check procedures to verify the 4262A specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. A simpler operational test is presented in Section III under Self Test (paragraph 3-5). The performance test procedures in this section can also be used to do an incoming inspection of the instrument and to verify whether the instrument meets its specified performance after troubleshooting or making adjustments. If specifications are found to be out of limits, check that controls are properly set, and then proceed to adjustments or troubleshooting.

Note

Allow a 15-minute warm-up and stabilization period before conducting any performance test.

4-3. EQUIPMENT REQUIRED.

4-4. Equipment required for the performance tests is listed in Table 1-4 Recommended Test Equipment in Section I. Any equipment whose characteristics equal the critical specifications given in the table may be substituted for the recommended model(s).

Accuracy checks in this section use standard LCR components as the samples to be connected to the 4262A. Accessories 16361A and 16362A can be utilized for this purpose. These accessory models are DUT (device under test) boxes from which the desired component can be selected and connected to the 4262A through cables by use of a rotary switch. If models 16361A/16362A are unavailable, use the discrete components recommended in Table 4-1.

Note

All components used as standards should be calibrated by an instrument whose specifications are traceable to NBS, PTB, LNE, NRC, JEMIC, or equivalent standards group; or all components should be calibrated directly by an authorized calibration organization such as NBS. The calibration cycle should be determined by the stability specification for each component.

4-5. TEST RECORD.

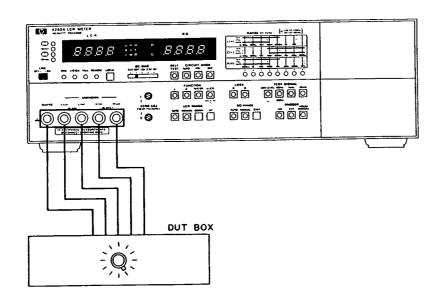
4-6. Results of the performance tests may be tabulated on the Test Record at the end of these procedures. The Test Record lists all the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments.

4-7. CALIBRATION CYCLE.

4-8. This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked with the following performance tests at least once every year. To maximize the "up time" of the instrument, the recommended preventive maintenance frequency for the 4262A is twice a year. Section IV Preliminary Operations

-PRELIMINARY OPERATIONS-

Before beginning performance test, adjustment, or calibration of 4262A, check fundamental operating conditions of the instrument and perform display ZERO adjustments in accord with the following procedures:


- 1) Confirm that power line power voltage in use is appropriate for the instrument operating power voltage.
- 2) Depress LINE pushbutton and confirm that all the front panel displays and indicators momentarily illuminate. The 4262A functions are automatically set to capacitance measurement mode.
- 3) ZERO offset adjustment should be made whenever a test fixture or DUT box is connected to 4262A UNKNOWN terminals. Adjust C ZERO ADJ and L ZERO ADJ controls so as to fully compensate for stray capacitance and residual inductance of equipment connected to UNKNOWN terminals. Adjustment procedures to adjust for individual test equipment used are provided in steps 3-a and 3-b which follow.
 - 3-a) 16361A/16362A or user built DUT box.
 - 1. Disconnect shorting bars from 4262A UNKNOWN terminals. Connect test leads between 4262A UNKNOWN terminals and DUT box.
 - 2. Set 4262A FUNCTION to C. Set TEST SIGNAL frequency as appropriate to DUT box being used.
 - 3. Set range control of DUT box to open-circuit position (2pF range on 16361A or 1pF range on 16362A). The 4262A is automatically set to its lowest capacitance measurement mode range.
 - 4. Adjust C ZERO ADJ control so that capacitance readout on 4262A LCR display is identical to calibrated value of DUT box range.
 - 5. Set 4262A FUNCTION to L.
 - 6. Set range control of DUT box to short-circuit position ($20m\Omega$ range on 16361A or on 16362A).
 - 7. Adjust L ZERO ADJ control for 000 counts on LCR display.

Note

To permit easy adjustment of ZERO ADJ controls for an individual DUT box, each DUT box should be equipped with short and open circuit ranges which provide 0μ H and 0pF (practical values), respectively.

Section IV Preliminary Operations

-PRELIMINARY OPERATIONS-

3-b) 16061A or other test fixtures.

- 1. Disconnect shorting bars from 4262A UNKNOWN terminals and attach test fixture to UNKNOWN.
- 2. No DUT should be connected to the test fixture.
- 3. The 4262A is automatically set to lowest capacitance range in measurement mode. Set 4262A TEST SIGNAL frequency to 10kHz.
- 4. Adjust C ZERO ADJ control for 000 counts on LCR display.
- 5. Set 4262A FUNCTION to L.
- 6. Connect a shorting lead to test fixture to short-circuit the measurement terminals.
- 7. Adjust L ZERO ADJ control for 000 counts on LCR display.

Note

When positions or mutual distance between Test Fixture contacts are changed, or contacts are changed to a different type, again perform ZERO adjustments. Section IV Calibration of DUT's

- CALIBRATION OF DUT'S -

Either user built DUT's or substitution standards with accuracies which satisfy the requirements may be used for performance testing and calibration of the 4262A. The DUT's recommended for making the tests and adjustments can be accuracy certified in accord with the calibration procedure detailed below. This calibration procedure applies to all alternate DUT's which do not carry public or testing laboratory certification.

[CAPACITANCE CALIBRATION]

Measure the DUT or substitution standard capacity with a precision capacitance bridge that meets the calibration accuracy and frequency requirements. For testing or calibrating dissipation factor of DUT, use equipment with required dissipation measuring capability and verify the exact calibration frequency to permit compensating D value for the difference in measuring frequency between individual Model 4262A's and the calibration equipment. If the frequency error is less than 3%, compensation is not required for dissipation factors of 0.01 and below.

[RESISTANCE CALIBRATION]

Use a metal film resistor of appropriate value for each DUT to maintain a constant resistance over a wide range of frequencies. Measure the resistance with a high accuracy DMM. When measuring $1k\Omega$ and below, use a 4 terminal measurement configuration.

[DISSIPATION FACTOR CALIBRATION]

DUT's used as D standards can be built with precisely measured components. The dissipation factor of the DUT is determined by an exact calculation from the calibrated values of each components in accord with the following equations:

Circuit Mode	Derivation of D
	$D = 1/\omega CpRp$
Cs Rs	$D = \omega C s R s$

Note

For easier calibration of dissipation, use accurately calibrated resistors rather than capacitors.

Section IV Calibration of DUT's

CALIBRATION OF DUT'S -

To minimize the calculation error, the inherent dissipation of the capacitor should be 0.001 or below. When using polystyrene or silvered mica type capacitors (dissipation factor is generally very low), the residual factors will not affect the derivation of accurate dissipation factors. If dissipation of capacitor alone is greater than 0.001, the effective value of the DUT is calculated in accord with the following equation:

Ds = Dc + Dr ($Dr \ll Dc, Dr \lt 0.01$)

where, Ds is actual dissipation factor of DUT. Dc is calculated D value (excludes inherent dissipation). Dr is inherent dissipation of capacitor.

Compensate the dissipation factor for the measuring frequencies of individual 4262A being tested or calibrated. Convert the D value of the calibration frequency to that of the actual 4262A measuring frequency in accord with the following equations:

	- C ,	$x = \frac{fc}{fm}$	Dm: D value at 4262A measuring frequency. Ds: D value at calibration frequency.
$Dm = X \cdot Ds$		$x = \frac{fm}{fc}$	fm: 4262A measuring frequency fc: Calibration frequency.

Note

To accurately measure frequencies fm and fc, use a reciprocal counter or calculate reciprocal number of period.

[CALIBRATION EQUIPMENT]

The recommended model and required performance of calibration equipment is listed below:

Instrument	Required Performance	Recommended Model
Capacitance Bridge	Capacitance Accuracy: 0.1% Dissipation Factor Accuracy: 0.1% (Resolution 0.0001)	GR 1620-A
DMM	Resistance Accuracy: 0.02%	HP 3490A HP 3455A
Freq. Counter	Reciprocal counter Resolution: 0.01Hz	HP 5300A/5307A HP 5323A

Section IV Table 4-1 Model 4262

Compo	onent ^{*1}	HP Part Number	Alternate Source	Required Calibration Accuracy
Capacitor	100pF 1000pF 10nF 100nF 1000nF 10μF 1000μF 10mF	0160-0336 0160-3766 0160-0408 0160-4113 0160-3645 0160-3563	HP Model 4440B GR Type 1413 SOSHIN TM-520C GR Type 1417	0.05%
Resistor:	1kΩ 10kΩ 100kΩ 10MΩ	0698-3491 0698-6360 0698-4158 0698-8194	GR Type 1433-Y	0.05%
Inductor:	100mH		GR Type 1482-L	0.05%
Dissipation Factor: 1000nF in parallel with 887Ω (D \approx 1.50 at 120Hz) 100nF in parallel with 887Ω (D \approx 1.79 at 1kHz) 10nF in parallel with 887Ω (D \approx 1.79 at 10kHz)		0160-3645 0698-4464 0160-4113 0698-4464 0160-3171 0698-4464	(D=1/ωCR)	**2 Capacitors0.1% Resistors 0.02%

Table 4-1. Recommended Components for Accuracy Checks

*1 The components listed above or used as standards should be calibrated before they are utilized.

**2 For easier calibration of dissipation to the required accuracy (0.1%), use accurately calibrated resistors rather than capacitors (use a high accuracy DMM to measure resistors).

Proper method and procedure for calibrating the DUT's is given in "Calibration of DUT's" (Page 4-4).

Section IV Paragraph 4-9

PERFORMANCE TESTS

4-9. MEASUREMENT FREQUENCY TEST.

DESCRIPTION:

This test verifies the accuracy of the measurement frequencies that are applied to an unknown sample connected to the 4262A.

SPECIFICATIONS:

Measurement Frequencies:

120Hz ± 3% 1kHz ± 3% 10kHz ± 3%

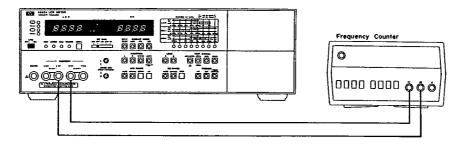


Figure 4-1. Measurement Frequency Test Setup.

EQUIPMENT:

PROCEDURE:

- 1. Connect frequency counter to the 4262A UNKNOWN terminals as shown in Figure 4-1.
- 2. Set range of frequency counter as appropriate for measuring 4262A test frequencies of 120Hz, 1kHz and 10kHz.
- 3. Read display output of frequency counter when 4262A TEST SIGNAL is set to 120Hz, 1kHz or 10kHz.
- 4. Frequency readouts must be within the following limits (record measured frequency in table below as the data is used in paragraph 4-12):

TEST SIGNAL	Test Limits	Counter Readout
120Hz	116.4 - 123.6Hz	
1 kHz	970 - 1030 Hz	
10kHz	9700 - 10300 Hz	

Note

Test limits in table above do not take into account reading error caused by measurement error in test equipment.

Note

If this test fails, refer to Service Sheet 11 in Section VIII for troubleshooting.

PERFORMANCE TESTS

4-10. CAPACITANCE ACCURACY TEST.

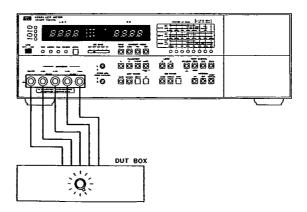
DESCRIPTION:

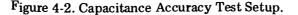
This test checks capacitance measurement accuracy for zero and full scale displays at three test frequencies and at two signal levels. The test is made by connecting a stable capacitor more accurate than the 4262A to the instrument and reading the display to verify that the 4262A meets its measurement accuracy specifications. Check all ranges in Cp mode and one range in Cs mode at each frequency (120Hz, 1kHz and 10kHz) to guarantee C measurement accuracy since all variable elements (range resistors and detecting phases) needed for C measurement are thus checked. In this test, almost all ranges, from the lowest through the highest ranges, are being verified.

Note

If the following tests satisfy the accuracy specifications, all the accuracy specifications listed in Table 1-1 are guaranteed.

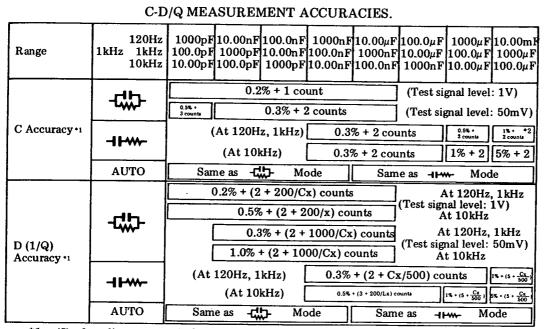
Capacitance Accuracy Test Ranges


TEST SIGNAL		CIRCUIT	RANGE									
Freq.	Level	MODE	10.00pF	100.0pF	1000pF	10.00n P	100.0nF	1000n F	10.00µF			
	LOW LEVEL	PRL.	\succ	\succ								
120Hz	oomal	PRL	\succ	\succ								
	aoma	SER	\ge	\succ	\geq	\succ	\succ					
	LOW LEVEL	PRL	\succ						\geq			
1kHz		PRL	\sim			I			\succ			
	normal	SER	\succ	\sim	\geq]						
	LOW LEVEL	PRL						\succ	\succ			
10kHz		PRL						\succ	\succ			
	normal	SER	\sim	\succ	\sim							


TEST SIGNAL level:

LOW LE	1	VI	E]	L					•					.50mV
normal.		•												1V

Tests for dissipation factor accuracy with above capacitance standards should be done at the same time as capacitance tests


Check all parallel (PRL) mode ranges. It is sufficient to check any one range in series (SER) mode.

PERFORMANCE TESTS

SPECIFICATIONS:

*1 ±(% of reading + counts). Cx is capacitance readout in counts. This accuracy only applies for D values to 1.999.

*2 $(5^{\circ}$ +2 counts) at 1kHz.

Accuracy applies over a temperature range of 23°C ±5°C (at 0°C to 55°C, error doubles).

EQUIPMENT:

DUT Box. HP 16361A/16362A Test Leads. HP P/N 16361-61605

Note

User built test fixture or DUT box may be used instead of those HP provides. If user supplied, the residual impedance and stray capacitance of the fixture and box must be taken into account.

PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-2). When TEST SIGNAL frequency is 10kHz, use HP 16362A in place of HP 16361A.
- 2. Set 4262A controls as follows:

DC BIASOFF
FUNCTION C
LCR RANGE AUTO
LOSSD
D/Q RANGE AUTO
TRIGGER INT

PERFORMANCE TESTS

3. Confirm that the table on page 4-11 is satisfied when the measurements are made by changing TEST SIGNAL, CIRCUIT MODE and DUT as given in the table. Record capacitance and dissipation factor readings in blank spaces provided in table.

Note

Error caused by stability of standard component is not taken into account for test limits in the table.

Test limits in parentheses are those for dissipation factor measurement value.

If tests fail, proceed to Section V ADJUSTMENTS or Section VIII SERVICE.

.

-

PERFORMANCE TESTS

TEST	SIGNAL	CIRCUIT				16361	A/16362A	RANGE	i	·	
Freq.	level	MODE	10pF ^{*1}	100pF	1000pF	10nF	100n F	1000nF	10µF	1000µF	10mF
	LOW LEVEL	PRL		±4 counts	±8 counts	±5 counts	±5 counts	C. V. ±5 counts (±3 counts)	C. V. ±5 counts (±3 counts)		
120Hz		PRL		±2 counts	±3 counts	±3 counts	±3 counts	C. V. ±3 counts (±3 counts)	C. V. ±3 counts (±3 counts)		
	normal	SER			L		C. V. ±3 counts (±3 counts)	C. V. ±5 counts (±4 counts)	£5 counts	C. V. ±7 counts (±4 counts	C. V. ±12 count (±7 count
	LOW LEVEL	PRL		±8 counts	±5 counts	C. V. ±5 counts (±3 counts)	C. V. ±5 counts (±3 counts)	C. V. ±5 counts (±3 counts)		<u>.</u>	-
1kHz		PRL	1					C. V. ±3 counts (±3 counts)			
	normal	SER		L	L					C. V. 5±52 count) (±7 counts	
	LOW LEVEL	PRL				C. V ±5 counts) (±3 counts			L	4	L
10kHz		PRL		1		C. V. s ±3 count ;) (±3 counts				-	
	normal	SER						C. V. ts ±5 count s)(±4 count			

*1 HP 16362A Only **2 C. V. = Calibrated Value of Standard Component.

PERFORMANCE TESTS

4-11. RESISTANCE/**ESR ACCURACY TEST.

DESCRIPTION:

This test verifies that resistance measurement accuracies for 4262A tested meets the specifications listed below. Although R measurement accuracies are actually guaranteed when C measurement accuracies meet the specifications, almost all ranges in Rp mode are checked in this test.

Note

Resistance accuracy has only to be proved for one resistor of about full scale value on any one range to verify specifications for 120Hz, 1kHz and 10kHz.

SPECIFICATION:

							10110			
Ranges	120Hz 1kHz 10kHz		10.00Ω	100.0Ω	1000Ω	10.00kΩ	100.0kΩ	1000ka	1 0.00M Ω	
		0.3% + 2 counts *2								
Accuracy •1	-1 ⊦-₩ - -787-₩-		0.2% +	2 counts						
	AUTO	Sam	e as ⊣⊦ ₩	-707-W-N	lode	Same as		- Mo	de	

RESISTANCE/ESR ACCURACY SPECIFICATIONS

*1 \pm (% of reading + counts).

*2 (5% + 2 counts) on $10.00M\Omega$ range at 10 kHz.

** Measurement range for ESR (equivalent series resistance) is from $1m\Omega$ to $19.99k\Omega$ (typical), which varies with series capacitance or inductance value refer to "REFERENCE DATA" on page 1-6.

Accuracy applies over a temperature range of 23°C ±5°C. (at 0°C to 55°C, error doubles).

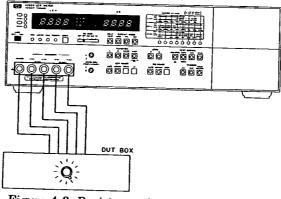


Figure 4-3. Resistance Accuracy Test Setup

EQUIPMENT:

DUT Box..... HP 16361A Test Leads..... HP P/N 16361-61605

Note

User built fixture/leads or DUT box can be used. If user supplied, the residual resistance must be considered.

PERFORMANCE TESTS

PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-3).
- 2. Set 4262A controls as follows:

DC BIAS	OFF
CIRCUIT MODE	PRL
FUNCTION	R/ESR
LCR RANGE	AUTO
TEST SIGNAL	
TRIGGER	

3. Check that the resistance measurement accuracies meet specifications according to table below:

DUT	1kΩ	10kΩ	100kΩ	10MΩ
Test Limits	C. V. ±5 counts	C. V. ±5 counts	C. V. ±5 counts	C. V. ±5 counts
R Readout				

C. V. = Calibrated Value of Standard Component

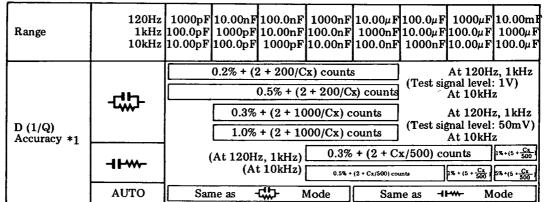
Note

Error caused by stability of standard component is not taken into account for test limits in table above.

Note

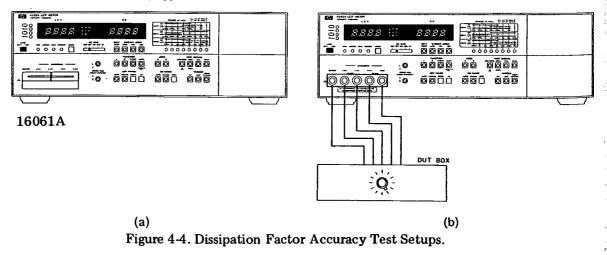
If this test fails, go to Section V or Section VIII for the troubleshooting.

4-12. DISSIPATION FACTOR ACCURACY TEST.


DESCRIPTION:

This test verifies that a tested 4262A satisfies dissipation factor measurement accuracies. Only one Dissipation Factor (D = 1.8) is checked for 120Hz, 1kHz and 10kHz in this check because only one detecting phase needs to be checked. All other factors influencing D accuracy were checked in paragraph 4-10.

Note


Dissipation factor accuracy for only one D standard which has a D value of approximately 1.8 need be proved to guarantee D accuracy. This test also verifies that 4262A correctly calculates Q factor as a reciprocal number of Dissipation Factor. Only one Q factor corresponding to a D value of approximately 1.8 is checked in this test. D accuracy in measuring inductance does not need to be checked because detecting phase accuracy is equated with that for capacitance measurement.

C-D ACCURACY SPECIFICATIONS

*1 ±(% of reading + counts). Cx is capacitance readout in counts.

Accuracy applies over temperature range of $23^{\circ}C \pm 5^{\circ}C$. (At $0^{\circ}C$ to $55^{\circ}C$, error doubles) This accuracy only applies for D values to 1.999.

4-14

Section IV

PERFORMANCE TESTS

EQUIPMENT:

Test Fixture	HP 16061A
DUT	. HP 16361A/16362A
Test Leads	.HP P/N 16361-61605

Note

HP 16361A and HP 16362A DUT Boxes are equipped with D standards (D = 1.8) calibrated at 1kHz and 10kHz frequencies, respectively. For the test at 120Hz frequency or if DUT box is not available, it is recommended that the following DUT's be used as D standards:

DUT	Freq.	Values of components	Calculated D	Tolerance*
с	120Hz	C :1000nF(HP P/N 0160-3645) R : 887Ω (HP P/N 0698-4464)	1.495	±0.030
- []-	1kHz	C : 100nF (HP P/N 0160-4113) R : 887Ω (HP P/N 0698-4464)	1.794	±0.036
R	10kHz	C : 10nF (HP P/N 0160-3171) R : 887Ω (HP P/N 0698-4464)	1.794	±0.036

* After calibrating capacitance C to within 0.1% and resistance R to within 0.02%, the dissipation factor tolerance is ± 0.002 for each DUT.

PROCEDURE:

いたいたちにないていたいでいたちのであるので

1. Connect DUT to 4262A.

Note

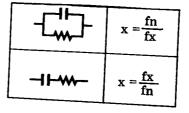
To facilitate connecting recommended DUT's, attach HP 16061A Test Fixture to 4262A UNKNOWN terminals [see Figure 4-4 (a)]. When HP 16361A/16362A DUT Box is used for this test, connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and DUT Box as shown in Figure 4-4 (b).

2. Set 4262A controls as follows:

DC BIAS	 	 			 OFF
CIRCUIT MODE.					
FUNCTION					
LOSS.					
LCR RANGE					
D/Q RANGE					
TRIGGER	 ••	 • •	• • •	• • •	 INT

Section IV

Model 428


PERFORMANCE TESTS

3. Check D accuracies according to following table:

T2		Ü	able.	
Freq	Circuit Mode	Test Level	D Test Limits	
10077	╶┎╼┡╌┰╴	Low Level	Calibrated Value $X \pm 8$ counts	D Reading
120Hz	L	normal	Calibrated Value X ± 6 counts	
	-11	normal	Calibrated Value X ± 8 counts	
1kHz	- ┌ ┛┣╌ <u>┣</u>	Low Level	Calibrated Value X ± 8 counts	
		normal	Calibrated Value X ± 6 counts	
+	<u> </u>	normal	Calibrated Value X ± 9 counts	
10kHz	╶ ╴ ┩┣╌ _┣	Low Level	Calibrated Value X ± 21 counts	
	l	normal	Calibrated Value X ± 11 counts	
	-11	normal	Calibrated Value X ± 13 counts	

Note

X in above table is produced by test frequency error and may be determined from the following equations:

where fn is nominal measurement frequency . . . and fx is measurement frequency from paragraph 4-9.

Note

Error caused by stability of standard component is not taken into account for test limits in table above.

4. Set 4262A TEST SIGNAL frequency to 1kHz and connect appropriate DUT to 4262A (Set 16361A LCR RANGE to D = 1.8). Note dissipation readout on

5. Push 4262A LOSS Q button.

6. Confirm that displayed Q factor is correct reciprocal number of dissipation.

Note

The 4262A rounds fractions of 5 or greater below the LSD to the next higher digit and drops any fractions of 4 or less. For example, if the actual dissipation is .0135, the display will read .014. If the actual dissipation is .0134, the display will read .013. If the test fails, refer to Section VIII Service.

2A

4-13. INDUCTANCE ACCURACY TEST.

DESCRIPTION:

This test verifies that inductance measurement accuracy satisfies the specifications listed below. L accuracy is proved to meet the specification when the results obtained in the accuracy checks of paragraphs 4-9 through 4-12 satisfy the specifications. This test is performed to confirm the L accuracy specification.

Note

Inductance accuracy has only to be proved for one inductor of about full scale value on any one range to verify specifications for all three test frequencies (120Hz, 1kHz and 10kHz).

SPECIFICATIONS:

Range	120Hz 1kHz 10kHz	100.0µH	10.00mH 1000μH 100.0μH		100.0mH	10.00H 1000mH 100.0mH	100.0H 10.00H 1000mH	1000H 100.0H 10.00H
		(At 120Hz, 1kHz) $0.3\% + 2$ counts (At 10kHz) $0.3\% + 2$ counts				1% + 2 1% + 2	counts 5% + 2	
L Accuracy			0.2	% + 2 cour	nts	-	(At 120Hz	, 1kHz)
*1	-780-44-	0.3% + 2 0.2% + 2 counts				(At 10kHz)	
	AUTO	Sai	meas - ⁊ŋ	🐝 Mode		Same a	ıs -∰ -	Mode

INDUCTANCE ACCURACY SPECIFICATIONS

*1 \pm (% of reading + counts).

Accuracy applied over temperature range of $23^{\circ}C \pm 5^{\circ}C$ (at $0^{\circ}C$ to $55^{\circ}C$, error doubles). This accuracy only applies for D values to 1.999.

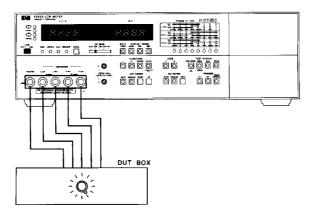


Figure 4-5 Inductance Accuracy Test Setup.

Section IV

Model 4262

PERFORMANCE TESTS

EQUIPMENT:

DUT Box..... HP 16361A/16362A Test Leads..... HP P/N 16361-61605

Note

User built test fixture/leads or DUT box must take residual impedance into consideration.

PROCEDURE:

1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-5). When TEST SIGNAL frequency is 10kHz, use HP 16362A in place of HP 16361A.

2. Set 4262A controls as follows:

DC BIASOF	F
FUNCTION.	L
LOSS.	D
LCR RANGE AUTO	С
D/Q RANGE AUTO	С
TRIGGER IN	Г

3. Set HP 16361A/16362A LCR RANGE to 100mH.

4. Confirm that L accuracy is within the test limits shown in table below:

Note

Test limits below are given for 100mH inductance measurement. If another inductance value is measured, refer to SPECIFICATIONS above.

TEST SIG Freq.	CIRCUIT MODE	TEST Limits	L Readout
120Hz	PRL	Calibrated Value ± 3 counts	
120112	SER	Calibrated Value ± 4 counts	
1kHz	PRL	Calibrated Value ± 5 counts	
IKIIZ	SER	Calibrated Value ± 4 counts	
10kHz	PRL	Calibrated Value ± 5 counts	
IUKHZ	SER	Calibrated Value ± 4 counts	

Note

Error caused by stability of standard component is not taken into account for test limits in table above. If this test fails, refer to Section VIII, Service.

Section IV Paragraph 4-14

PERFORMANCE TESTS

4-14. INTERNAL DC BIAS SOURCE TEST.

DESCRIPTION:

weel 4262A

This test verifies that the internal dc bias source will apply the specified bias values to the device under test.

SPECIFICATIONS:

DC bias, Internal Source: 1.5V ±5%, 2.2V ±5%, 6V ±5%

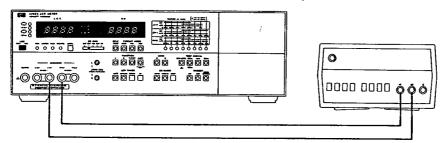


Figure 4-6. Internal DC Bias Source Test Setup.

EQUIPMENT:

DC Voltmeter HP 5300A/w5306A

PROCEDURE:

1. Connect DC Voltmeter to 4262A UNKNOWN terminals as shown in Figure 4-6.

2. Set 4262A controls as follows:

 FUNCTION.
 C

 CIRCUIT MODE.
 PRL

 Other Controls
 any position

Note

Do not connect anything to UNKNOWN terminals.

3. Test limits are shown below. Read dc voltmeter output with DC BIAS switch set as follows:

DC BIAS Switch Setting	Test Limits	Voltmeter Readout
1.5V	1.425V thru 1.575V	
2.2V	2.09 V thru 2.31 V	
6 V	5.7 V thru 6.3 V	

Note

Reading error caused by measurement error of test equipment is not taken into account for test limits in table above.

4. If tests fail, proceed to Troubleshooting in Section VIII.

4-15. OFFSET ADJUSTMENT TEST.

DESCRIPTION:

This test checks that both C and L ZERO ADJ controls can be set (over their specified ranges) to respectively offset the stray capacitance and residual inductance of test jig.

Model 4262

SPECIFICATIONS:

Offset Adjustment:	C:up to 10pF
	L: up to 1μ H

EQUIPMENT:

DUT Box	HP 16362A (19pF)
Test Leads	HP P/N 16361-61605

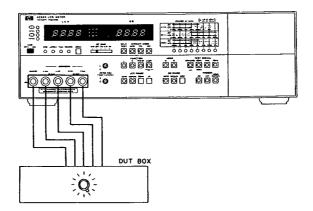


Figure 4-7. Offset Adjustment Test Setup.

PROCEDURE:

(1) C ZERO ADJ test.

- 1. Connect shorting bars at 4262A UNKNOWN terminals for doing a two terminal measurement. Connect no DUT to unknown terminals (open).
- 2. Set 4262A controls as follows:

DC BIASOFF
CIRCUIT MODE AUTO
FUNCTIONC
LOSSD
TEST SIGNAL 10kHz
LCR RANGE
(Set to 10pF range)
DQ RANGE AUTÓ
TRIGGER INT

- 3. Rotate C ZERO ADJ control fully cw.
- 4. Verify that capacitance readout on 4262A LCR display is within 0.00 to 0.30 counts.
- 5. Disconnect shorting bars from 4262A UNKNOWN terminals and connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 4-7.

Note

If 16362A is not available, connect an 18pF capacitor (HP P/N 0160-2263) directly to UNKNOWN terminals (without disconnecting shorting bars).

6. Set 16362A LCR RANGE to 19pF.

7. Note capacitance readout on 4262A LCR display.

- 8. Rotate C ZERO ADJ control fully ccw.
- 9. Verify that capacitance readout on 4262A LCR display reduces count more than 10.30 counts as compared to count obtained in step 7.

10. Remove Test Leads (or DUT) from UNKNOWN terminals.

(2) L ZERO ADJ test

sindel 4262A

- 11. Set 4262A FUNCTION to L.
- 12. Connect shorting bars on 4262A UNKNOWN terminals for doing a two terminal measurement. Connect a shorting lead to UNKNOWN terminals so that H and L terminals are short circuited.
- 13. Rotate L ZERO ADJ control fully cw.
- 14. Verify that inductance readout on 4262A LCR display is within 0.00 and 0.02 counts.
- Disconnect shorting bars from 4262A UNKNOWN terminals and connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 4-7.

Note

If 16362A is not available, connect a 5.6μ H inductor (HP P/N 9100-1618) directly to UNKNOWN terminals as a DUT (without disconnecting shorting bars).

- 16. Set 16362A LCR RANGE to 10μ H.
- 17. Note inductance readout on 4262A LCR display.
- 18. Rotate L ZERO ADJ control fully ccw.
- 19. Verify that inductance readout on 4262A LCR display reduces count more than 1.02 counts as compared to count obtained in step 17.

4-16. COMPARATOR TEST (OPTION 004 ONLY).

DESCRIPTION:

This test verifies that the built-in 5 digit digital comparator makes the correct comparison between the digits set into the thumbwheel switch and the displayed counts. Comparison output data at COMPARATOR OUTPUT connector (rear panel) is also checked by this test.

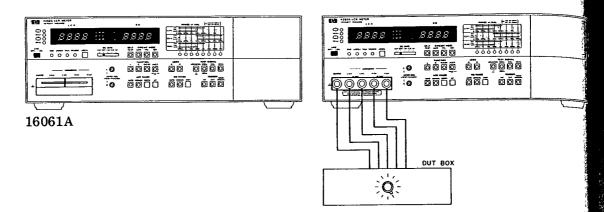


Figure 4-8. Comparator Test Setup.

EQUIPMENT:

PROCEDURE:

1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16361A DUT Box as shown in Figure 4-8. If DUT Box is not available, attach 16061A Test Fixture to 4262A UNKNOWN terminals and use a 100pF capacitor as a DUT.

2. Set 4262A controls as follows:

DC BIAS	OFF
CIRCUIT MODE	AUTO
FUNCTION.	C
TEST SIGNAL	. 1kHz
LCR RANGE	AUTO
TRIGGER	INT

3. Set 16361A LCR RANGE to 100pF.

4. Push COMPARATOR ENABLE button (simultaneously, the LCR RANGE and DQ RANGE will be automatically changed to MANUAL).

5. Set LCR HIGH LIMIT switch to "1000" and LOW LIMIT switch to "0950".

6. Verify HIGH and LOW LIMIT settings by pushing and holding upper LIMIT CHECK pushbutton.

7. Adjust ZERO ADJ C control for a display reading of "949" (or less) counts.

Section IV

PERFORMANCE TESTS

- 8. LOW lamp should be lit. Verify circuit configuration on COMPARATOR OUT-PUT connector (J6) according to Figure 4-9.
- 9. Adjust ZERO ADJ C control cw for a display reading of "950" (up to "999").
- 10. IN lamp should be lit. Verify relay contact and TTL output as in step 8.
- 11. ADJUST ZERO ADJ C control cw for a display reading of "1000" or more.
- 12. HIGH lamp should be lit. Verify relay contact and TTL output as in step 8.

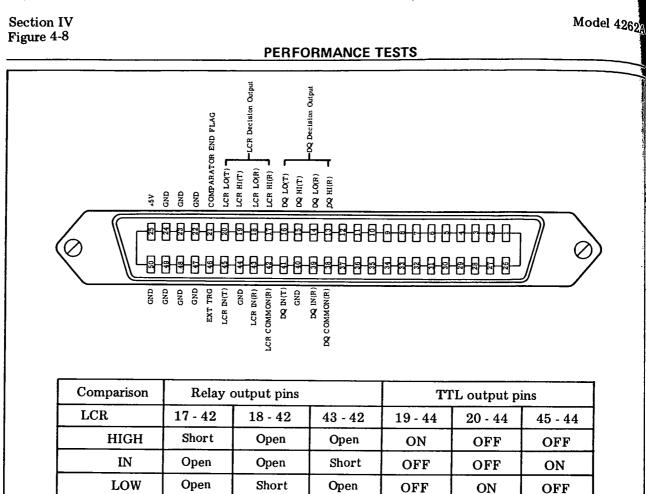
13. Set 16361A LCR RANGE to D = 1.8 and 4262A LCR RANGE manually to 1μ F.

Note

If HP 16361A is not available, use a D factor sample as shown below.

╡ _┛ ╘╢┝┰╴	C: 100nF (HP P/N 0160-4113)
	R: 887Ω (HP P/N 0698-4464)

14. Push D/Q RANGE AUTO button.


:: 4262A

Note

The 4262A D/Q RANGE is automatically set to an appropriate range and successively reset to MANUAL.

15. Set appropriate numbers into D/Q LIMIT switches. Change the set numbers and check comparison outputs with Figure 4-9.

IN	Open	Open	Short	OFF	OFF	ON
LOW	Open	Short	Open	OFF	ON	OFF

39 - 38

Open

15 - 40

ON

16 - 40

OFF

41 - 40

OFF

14 - 38

Open

Figure 4-9. DATA OUTPUT (J6) comparator output data format.

DQ

HIGH

13 - 38

Short

10del 4262A

Section IV Paragraph 4-17

PERFORMANCE TESTS

4-17. HP-IB INTERFACE TEST (OPTION 101 ONLY).

DESCRIPTION:

This test verifies that the HP-IB circuitry has the capability to correctly communicate between external HP-IB devices and the 4262A through the interface bus cable.

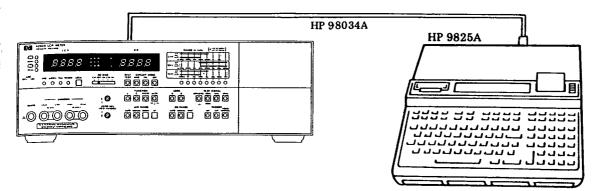


Figure 4-10. HP-IB Interface Test Setup.

EQUIPMENT:

A Contraction

じし

Calculator	
ROM	HP 98210A,
	98213A or 98214A
Interface Card with cable	HP 98034A

PROCEDURE:

- 1. Connect 98034A Interface Card with cable between 9825A I/O slot and 4262A rear panel HP-IB connector. Install required ROM blocks in 9825A ROM slots.
- 2. Set 98034A Select Code Switch dial to select code 7 (using a screwdriver).
- 3. Set 4262A rear panel ADDRESS switch to address number 17 in binary code (refer to Paragraph 3-68).
- 4. Load test program (shown on Pages 4-26 through 4-35) in calculator.
- 5. Execute the program. Check that 4262A display, calculator display, and printed data are consistent with the results described for each program.
- 6. Perform steps 4 and 5 with respect to individual test programs and verify that 4262A and calculator correctly communicate through the HP-IB interface.

Note

Connect appropriate sample(s) to 4262A UNKNOWN terminals as necessary (and observe whether printout is correct).

TEST PROGRAM 1

[PURPOSE]

This test verifies that system controller remotely sets 4262A TEST SIGNAL and TRIGGER and successively accesses the measured data for printing.

[PROGRAMMING]

```
0: prt "MEASURED DATA
    RECEIVED"; spc 3
1: dev "4262A",717
2: rem 7
3: cli 7
4: clr "4262A"
5: wrt "4262A","H3T3"; wait 1000
6: trg "4262A"
7: red "4262A",A,B
8: flt 3
9: prt "LCR DATA=",A,
    "DQ DATA=",B
10: spc 3
11: end
*32657
```

- 0) Commands calculator to print MEASURED DATA RECEIVED and successively to space three lines.
- 1) Defines 717 (= Interface Select Code 7, address 17) as address code for 4262A in the programming.
- 2) Sets REN (Remote Enable) line of the Bus line to "1". Enables remote control.
- 3) Sets IFC (Interface Clear) line of Bus line to "1". Sets interface select code 7 to its initial conditions.
- 4) Sets 4262A to its initial conditions. (Device Clear: ref to Para 3-72).
- 5) Addresses calculator to talk and 4262A to listen. Program code string sets device: TEST SIGNAL 10kHz, and TRIGGER to HOLD/MANUAL (ref to Para 3-69).
- 6) Triggers 4262A (ref to Para 3-73).
- 7) Addresses calculator to listen and 4262A to talk. Takes incoming data and stores LCR measurement data in register A and DQ data in register B (ref to Para 3-67).
- 8) Designates printer print format and floating decimal point (3 digits below decimal point).
- 9) Prints LCR and DQ data.
- 10) Commands printer to line space three vertical lines to put entire recording into proper cutting position.

[RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints measured LCR and DQ values.

Model 4262A

Section IV Test Program 2

PERFORMANCE TESTS

TEST PROGRAM 2

[PURPOSE]

This test verifies that system controller sets 4262A TEST SIGNAL and TRIGGER and prints the measured data along with the 4262A functional status codes.

[PROGRAMMING]

0: prt "MEASURED DATA RECEIVE	D ";spc 3
1. Iem /	
2: cli 7	
3: clr 717	
4: wrt 717, "H3P1T3"; wait 1000	
5: trg 717	3) Sets device address code 717 (426
6: fmt 4b,f,2b,f	conditions.
7: red 717, A, B, C, D, E, F, G, H	
8: fxd 0;prt "S=",A,"F=",B	4) Addresses calculator to talk and
"C=",C,"F=",D	dress code 717 (4262A) to listen
9: flt 3;prt "N=",E	string sets device TEST SIGNA
10: fxd 0;prt "S=",F,"F=",G	LOW LEVEL, and TRIGGER to
11: flt 3;prt "N=",H	UAL (ref to Table 3-60).
12: spc 3	
13: end	6) Designates format for data in progra
*15961	
	7) Addresses calculator to listen and 4
	Takes incoming data A, B, C, D.

- 62A) for initial
- device of ad-Program code L to 10kHz, HOLD/MAN-
- ram step 7.
- 4262A to talk. Takes incoming data A, B, C, D, F and G in binary code and translates them into decimal code. Takes data E and H in free field format. Stores data items in the registers specified in the variable lists.
- 8-11) Prints data in fixed or floating decimal point format. Data items are:

A: Status,	B: Function,
C: Circuit Mode,	D: Frequency,
E: LCR Data,	F: DQ Status,
G: DQ Function,	H: DQ Data.

Refer to Paragraph 3-67 and Table 3-60.

[RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints 4262A functional codes along with the measured LCR and DQ

TEST PROGRAM 3

[PURPOSE]

This test verifies that 4262A notifies system controller of the Request Status (RQS) and that demands of the Service Request (SRQ) are processed according to programmed service routing.

[PROGRAMMING]

```
0: prt "MEASURED DATA RECEIVED -DATA READY RQS MODE"; spc 3
1: oni 7, "SRQ"
2: rem 7
                                      1) Designates label (SRQ) for service routing to be
3: cli 7
                                         performed when an interrupt is set by a device
4: clr 717
                                         on select code 7 Bus Line.
5: wrt 717,"H3D1T3";wait 1000
6: trg 717
7: "LOOP":eir 7,128
8: if bit(0,B)=1;gto "READ"
9: gto "LOOP"
10: "SRQ":rds(717)→B
                                      5) Addresses calculator to talk and 4262A to listen.
11: if bit(6,B)=1;jmp 2
                                         Program code string set device: TEST SIGNAL
12: prt "OTHER DEVICE SRQ"; spc 3
                                         10kHz, Data Ready RQS Mode to ON (ref to
13: "IRET":eir 7,128
                                         Para 3-70), and TRIGGER to HOLD/MANUAL.
14: iret
15: "READ":red 717,A,B
16: flt 3;prt "LCR DATA=",A,
                                      7) Labels LOOP. Enables Service Request to be
     "DO DATA=",B
                                         sent from device on select code \overline{7} Bus Line.
17: spc 3
                                         Checks status of SRQ line on the Bus Line.
18: end
*22913
                                      8) If the last bit of Status Byte (corresponding to
                                         Data Ready - ref to Para 3-70) is 1, goes to pro-
```

Note

gram step 15 labeled READ.

When status of the SRQ line becomes 1, the programming sequence phase changes from cycling through steps 7, 8, and 9 and successively goes to step 10. Steps 10 through 14 comprise the service routing to process interrupt (Service Request) phase. See Figure 4-11 for programming flow diagram.

- 10) Labels SRQ. Takes Status Byte responding to serial poll of calculator and stores data in register B.
- 11) Verifies that SRQ YES/NO line of Status Byte is actually 1 (ref to Para 3-70).

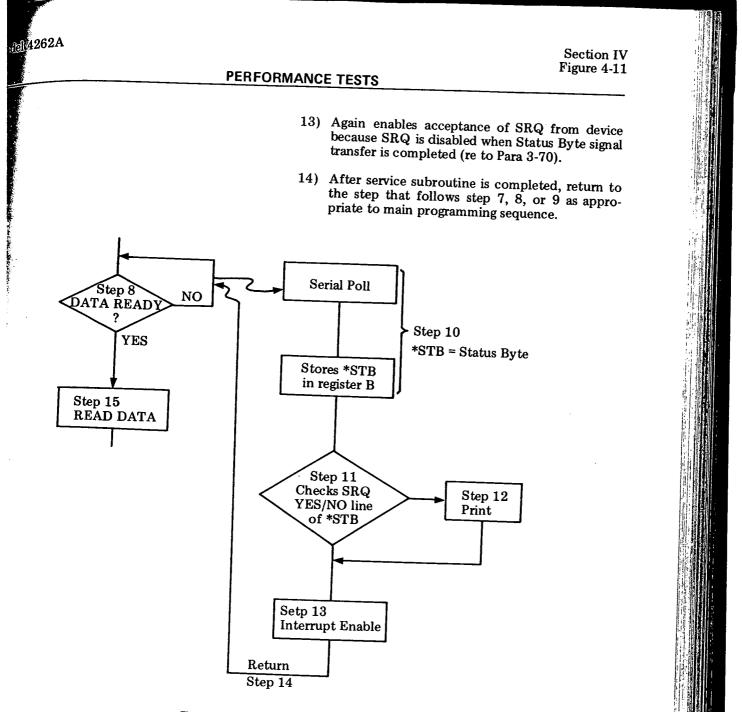


Figure 4-11 SRQ Service Routing.

[RESULTS]

Calculator prints LCR and DQ values of the sample measured by 4262A (test frequency 10kHz). Verifies that 4262A SRQ lamp lights momentarily. Press calculator RUN button again to repeat checks. If calculator prints OTHER DEVICE SRQ, interface is faulty.

TEST PROGRAM 4

[PURPOSE]

This test confirms that 4262A FUNCTION, LOSS, and TEST SIGNAL functions are fully controlled by system controller.

[PROGRAMMING]

Annotation is omitted.

```
0: prt "ENTER REMOTE PROGRAM CODE ";spc 3

1: fmt 1,4f1.0

2: rem 7

3: cli 7

4: clr 717

5: ent "FUNCTION?(1,2,3)",A

6: ent "LOSS?(1,2)",B

7: ent "FREQUENCY?(1,2,3)",C

8: wrt 717.1,"F",A,"L",B,"H",C,"T3";wait 1000

9: trg 717

10: red 717,D,E

11: flt 3;prt "LCR DATA=",D,"DQ DATA=",E

12: spc 3

13: end

*31495
```

[RESULT]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints LCR and DQ values. Confirms that 4262A functions were correctly set (check the printed data). iel 4262A

PERFORMANCE TESTS

TEST PROGRAM 5

[PURPOSE]

This test verifies that 4262A self test function can be remotely controlled.

[PROGRAMMING]

0: prt "REMOTE SELF TEST"; spc 3 1: oni 7,"SRQ" 2: rem 7 3: cli 7 4: clr 717 5: wrt 717,"S1" 6: "LOOP":eir 7,128 7: if bit(2,A)=1;dsp "PASS" 8: if bit(3,A)=1;dsp "FAIL 1" 9: if bit(4,A)=1;dsp "FAIL 2" 7, 8, 9, 10) 10: if bit(5,A)=1;dsp "FAIL 3" ill: gto "LOOP" 12: "SRQ":beep;rds(717)→A to Para 3-70). 13: if bit(6,A)=1;gto "IRET" 14: prt "OTHER DEVICE SRQ"; spc 3 15: "IRET":eir 7,128 16: iret 17: end *14058

5) Addresses calculator to talk and 4262A to listen. Sets device to SELF TEST mode.

Section IV Test Program 5

Checks status of the third through sixth bit of Status Byte signal and displays its contents (ref to Para 3-70).

12) Labels SRQ. Takes Status Byte responding to serial poll of calculator and stores data in register A. Simultaneously beeps in announcement.

[RESULT]

The 4262A performs self test. Letters "PASS" flash on both 4262A and calculator displays.

TEST PROGRAM 6

[PURPOSE]

This test verifies that system controller takes the incoming data in character (ASCII) code and prints the data in accord with the format shown in Paragraph 3-67.

[PROGRAMMING]

```
0: prt "RECEIVING MEASURED DATA when using STRING-ADV. ROM"; spc 3
1: dim A$[25]
2: rem 7
                                     1) Establish dimension of 25 character memory
3: cli 7
                                        capacity for using string variables.
4: clr 717
5: wrt 717, "H3T3"; wait 1000
6: trg 717
7: red 717,A$
8: prt A$
9: spc 3
10: end
                                     7) Takes incoming data (measured data) in charac-
*671
                                        ter (ASCII) code.
```

8) Prints data in character code.

[RESULT]

The measured data and 4262A functional status code are printed in accord with the format shown in Paragraph 3-67.

:0] **4262A**

PERFORMANCE TESTS

TEST PROGRAM 7

[PURPOSE]

This test verifies that 4262A FUNCTION, FREQUENCY and TRIGGER can be controlled in character (ASCII) code and that the measured data is printed in accord with the format shown in Paragraph 3-67.

[PROGRAMMING]

Annotation is omitted.

0: prt "ENTER REMOTE PROGRAM CODE when using STRING-ADV ROM";spc 3 1: dim A\$[20],B\$[25] 2: rem 7 3: cli 7 4: ent "PROGRAM CODE ? (as F2H3T3)",A\$ 5: wrt 717,A\$;wait 1000 6: trg 717 7: red 717,B\$ 8: prt B\$ 9: spc 3 10: end *3337 [RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints LCR and DQ values. Confirms that 4262A functions were correctly set (check the printed data).

Section IV Test Program 7 Section IV Test Program 8:

PERFORMANCE TESTS

TEST PROGRAM 8

[PURPOSE]

This program checks function of 4262A ADDRESS switch (rear panel) and verifies that the address code set into the switch provides access to the 4262A by the system controller.

Note

To perform this test, set ADDRESS switch (ref to Para 3-68) according to calculator display and, after setting the switch, press calculator CONT button.

[PROGRAMMING]

Annotation is omitted.

```
0: prt "REM ADDRESS TEST"; spc 3
1: dsp "Set up SW *ADDRESSABLE ";beep;stp
2: rem 7
3: cli 7;clr 7
4: dsp "Set up A5-A1=00000";beep;stp
5: 700+A; gsb "CHK"
6: dsp "Set up A5-A1=00001";beep;stp
7: 701 → A; qsb "CHK"
8: dsp "Set up A5-A1=00010";beep;stp
9: 702+A;qsb "CHK"
10: dsp "Set up A5-A1=00100"; beep; stp
11: 704+A;gsb "CHK"
12: dsp "Set up A5-A1=01000";beep;stp
13: 708+A;gsb "CHK"
14: dsp "Set up A5-A1=10000";beep;stp
15: 716+A;gsb "CHK"
16: dsp "Set up A5-A1=10001";beep;stp
17: 717+A; gsb "CHK"
18: prt "TEST END"; spc 3
19: end
20: "CHK":dsp "Check *LISTEN=1 *REMOTE=1";beep;wrt A;wait 2000
21: dsp "Check *TALK=1
                         *REMOTE=1";beep;red A;wait 2000
22: cli 7
23: ret
*11359
```

[RESULT]

Both 4262A LISTEN and REMOTE lamps illuminate for two seconds. Successively, both TALK and REMOTE lamps light for two seconds. Calculator prints TEST END.

Model 426

TEST PROGRAM 9

Checks that 4262A functions change at intervals of 1 second as follows:

```
0: prt "REMOTE/LOCAL TEST"; spc 3
1: cli 7
2: rem 7
3: 110 7
4: beep;clr 717;wrt 717, "F1H1"; 1) FUNCTION: L, TEST SIGNAL: 120Hz.
   wait 1000
                                    2) FUNCTION: C. CIRCUIT MODE: PRL, TEST
5: beep;lcl 717;wait 1000
                                      SIGNAL: 1kHz, LOSS: Q, TRIGGER: EXT.
6: beep;wrt 717, "F2C2H2L2T2";
   wait 1000
                                    3) FUNCTION: R/ESR, CIRCUIT MODE: SER,
7: beep;lcl 7;wait 1000
                                      TEST SIGNAL: 10kHz, TRIGGER: HOLD/
8: rem 7
                                      MANUAL.
9: beep;wrt 717, "F3C3H3T3";
                                      Calculator prints TEST END.
   wait 1000
10: clr 717
                                                      Note
11: cli 7
12: 1cl 7
                                        llo in step 3: Local Lockout; causes 4262A
13: prt "TEST END"; spc 3
                                        LOCAL function to be invalid.
14: end
*15032
```

TEST PROGRAM 10

Checks that 4262A range indicator lamps light (in turn) each for 1 second.

```
0: prt "REMOTE RANGING TEST"; spc 3
1: fmt 1,f1.0
2: rem 7
3: cli 7
4: clr 717
5: 1+A
6: "LOOP":wrt 717.1,"R",A
7: beep;wait 1000
8: if (A+1+A) #9;gto "LOOP"
9: clr 717
10: prt "TEST END"; spc 3
11: end
*6328
```

ewlett-Pac lodel 4262 GR METE stal No	ZA		Tested by Data			
aragraph Sumber	Test			Results		
£		<u></u>	Minimum	Actual	Maximum	
4-9	MEASUREMENT FREQU	JENCY				
	120Hz		116.4		123.6	
	1kH	Z	970		1030	
¥	10kH	z	9700		10300	
i-10	CAPACITANCE ACCURA	CY TEST				
	120Hz PRL LOW L	EVEL				
		100pF	C. V. * - 4 counts		C. V. + 4 counts	
		1600pF	C. V 8 counts		C. V. $+ 8$ counts	
		10 nF	C. V 5 counts		C. V. + 5 counts	
1		100 nF	C. V 5 counts	<u> </u>	C. V. + 5 counts	
		1000nF	C. V 5 counts	<u> </u>	C. V. + 5 counts	
		$10\mu\mathrm{F}$	C. V 5 counts		C. V. + 5 counts	
	120Hz PRL 1V	100pF	C. V 2 counts		C. V. + 2 counts	
		1000pF	C. V 3 counts		C. V. $+ 3$ counts	
		10nF	C. V 3 counts		C. V. $+ 3$ counts	
		100nF	C. V 3 counts		C. V. $+ 3$ counts	
		1000nF	C. V 3 counts		C. V. $+ 3$ counts	
		$10\mu F$	C. V 3 counts		C. V. $+ 3$ counts	
	120Hz SER 1V	100nF	C.V 3 counts		C. V. + 3 counts	
		1000nF	C. V 5 counts		C. V. + 5 counts $C. V. + 5 counts$	
		10µ F	C. V 5 counts		C. V. + 5 counts $C. V. + 5 counts$	
		$100 \mu F$	C.V 7 counts		C. V. + 7 counts	
		10mF	C. V 12 counts		C. V. $+$ 12 counts	
	1kHz PRL LOW LEV	EL				
		100pF	C. V8 counts		C. V. + 8 counts	
		1000pF	C. V5 counts		C. V. $+ 5$ counts	
		10nF	C. V5 counts		C. V. $+ 5$ counts	
		100nF	C. V5 counts		C. V. $+ 5$ counts	
		1000nF	C. V5 counts		C. V. + 5 counts	

12

*C. V. = Calibrated Value.

「「「「「「「」」」」

32

(Sheet 1 of 3)

Paragraph	Test		Results		
Number			Minimum	Actual	Maximum
4-10	CAPACITANCE ACCUF (Continued)	ACY TEST			
	1kHz PRL 1V	100pF	C. V 3 counts		C. V. + 3 cou
		1000 pF	C. V 3 counts		C. V. + 3 cou
		10nF	C. V 3 counts		C. V. + 3 cou
		100nF	C. V 3 counts		C. V. $+ 3 cou$
		1000nF	C. V 3 counts		C. V. + 3 cou
	1kHz SER 1V	10 nF	C. V 3 counts		C. V. + 3 cou
		100nF	C. V 5 counts		C. V. + 5 cou
		1000nF	C. V 5 counts		C. V. + 5 cou
		$10\mu F$	C. V 5 counts		C. V. + 5 cou
		1000µF	C. V 52 counts		C. V. + 52 co
	10kHz PRL LOW I	LEVEL			
		10pF	C. V 8 counts		C. V. + 8 cou
		100 pF	C. V 5 counts		C. V. + 5 co
		1000 pF	C. V 5 counts		C. V. + 5 co
		10nF	C. V 5 counts		$\mathbf{C. V. + 5 cor}$
		100nF	C. V 5 counts		C. V. $+ 5 co$
	10kHz PRL 1V	10pF	C. V 3 counts		C. V. + 3 co
		$100 \mathrm{pF}$	C. V 3 counts	<u> </u>	C. V. + 3 co
		1000pF	C. V 3 counts		C. V. + 3 co
		10nF	C. V 3 counts		C. V. + 3 co
		100nF	C. V 3 counts		C. V. + 3 co
	10kHz SER 1V	1000pF	C. V 3 counts		C. V. + 3 co
		10nF	C. V 5 counts		C. V. + 5 cc
		100nF	C. V 5 counts		C. V. + 5 cc
		1000nF	C. V 5 counts		C. V. + 5 cc
		$10\mu\mathrm{F}$	C. V 12 counts		C. V. +12 c
				l	

*C. V. = Calibrated Value.

aragraph		Test	Results		
Number		1est	Minimum	Actual	Maximum
鱼1	RESISTANCE	ACCURACY TEST			
		1 k Ω	C. V.* 5 counts		C. V. + 5 counts
		10kΩ	C. V 5 counts		C. V. + 5 count
		100kΩ	C. V 5 counts		C. V. + 5 count
		10ΜΩ	C. V 5 counts		C. V. + 5 count
4-12	DISSIPATION ACCURACY TI D = 1.8	FACTOR EST (Procedure A),			
	120Hz P	RL LOW LEVEL	C. V 8 counts		C. V. $+ 8$ counts
		1V	C. V 6 counts		C. V. $+ 6$ counts
	S	ER 1V	C. V 8 counts		C. V. + 8 counts
	1kHz P	RL LOW LEVEL	C. V 8 counts		C. V. + 8 counts
		1V	C. V 6 counts	·	C. V. $+ 6$ counts
	SI	ER 1V	C. V 9 counts		C. V. + 9 counts
	10kHz Pl	RL LOW LEVEL	C. V 21 counts		C. V. + 21 count
		1V	C. V 11 counts		C. V. +11count
se e Se e	SI	ER 1V	C. V 13 counts		C. V. +13 count
4-13	INDUCTANCE	ACCURACY TEST (100mH)			
-	120Hz	PRL	C. V 3 counts		C. V. + 3 counts
* • [SER	C. V 4 counts		C. V. + 4 counts
	1kHz	PRL	C. V 5 counts		C. V. + 5 counts
		SER	C. V 4 counts		C. V. + 4 counts
	10kHz	PRL	C. V 5 counts		C. V. + 5 counts
		SER	C. V 4 counts		C. V. + 4 counts
4-14	INTERNAL DC TEST	BIAS SOURCE			
		1.5V	1.425		1.575
		2.2V	2.09		2.31
		6 V	5.7		6.3

*C. V. = Calibrated Value.

nodel 4262A

SECTION V

5-1. INTRODUCTION.

5-2. This section provides the information needed to adjust the 4262A to its specifications (listed in Table 1-1). Prime purpose of adjustment is to return the instrument to its peak operating capabilities after repairs have been made. The instrument should be tested and adjusted when a part or component has been replaced. Adjustments sometimes restore an instrument to its normal operating conditions without the necessity of repairs. Adjustment procedures can also be performed periodically to maintain top operating performance. Re-commended adjustment schedule for the 4262A is every 12 months. All adjustable components referred to in individual tests are summarized in Table 5-1 and adjustments locations are identified pictorially on the foldout sheets in Section VIII. If proper performance cannot be achieved after adjustment procedures have been performed, refer to troubleshooting procedures beginning with paragraph 8-42.

Note

Before performing any adjustments, warm up instrument for more than 60 minutes to stabilize operating conditions.

-3. SAFETY REQUIREMENTS.

-4. Although the instrument has been designed in cordance with international safety standards, this anual contains information, cautions, and wamgs which must be followed to ensure safe operaon and to keep the instrument in safe condition sections II and III). Adjustments described in is section should be performed only by qualified vice personnel.

WARNING

ANY INTERRUPTION OF THE PROTECTIVE (GROUNDED) CONDUCTOR (INSIDE OR OUT-SIDE THE INSTRUMENT) OR DISCONNECTION OF THE PRO-TECTIVE EARTH TERMINAL IS LIKELY TO MAKE THE INSTRU-MENT DANGEROUS. INTEN-TIONAL INTERRUPTION IS PROHIBITED.

The opening of covers for removal of parts, pt those to which access can be gained by 1, is likely to expose live parts. Accessible inals may also be live.

Capacitors inside instrument may still be ged even if instrument has been disconnected its source of supply.

WARNING

ADJUSTMENTS DESCRIBED HEREIN ARE PERFORMED WITH POWER SUPPLIED TO THE IN-STRUMENT AFTER PROTEC-TIVE COVERS HAVE BEEN RE-MOVED. ENERGY EXISTING AT MANY POINTS MAY, IF CON-TACTED, RESULT IN PER-SONAL INJURY.

5-7. EQUIPMENT REQUIRED.

5-8. The equipment needed to adjust the Model 4262A is listed in Table 1-4 (Page 1-6). This equipment should always be calibrated to satisfy its own specifications and those of the required characteristics. If the recommended model is not available, any instrument that has specifications equal to or better than required specifications may be substituted.

5-9. FACTORY SELECTED COMPONENTS.

5-10. Factory selected components can be recognized by an asterisk near the reference designator on the schematic diagrams in Section VIII (a nominal value is shown). Section VI, Replaceable Parts, lists the part number of the nominal value component. If the nominal value of the selected component is changed, the Manual Changes supplement, supplied with this manual, will list the change to update the manual. Table 5-2 lists all factory selected components with their nominal value ranges and their influence on instrument performance.

5-11. Adjustable components, with reference designators, are listed in Table 5-1. The table gives the name of the control to be adjusted and the purpose of its adjustment.

5-12. ADJUSTMENT RELATIONSHIPS.

5-13. The adjustment procedures, beginning with paragraph 5-20, should be performed in step sequence as they are interactive. Neglecting or changing procedures may make it impossible to gain best 4262A performance. Table 5-4 shows alignment procedures required when repairing the instrument (replacement of a component or board). The adjustments in Table 5-4 assume that no other adjustments were attempted prior to board or component replacement.

5-14. ADJUSTMENT LOCATIONS.

5-15. For reference, overall adjustment location illustrations are given in Figure 8-22. The locations of individual board assemblies are denoted in board assembly component location illustrations included on each foldout service sheet.

Section V Table 5-1

	T	Fable 5-1. Adjustable Components.		
Reference Designator	Name of Control	Purpose		
A9R6 (Para. 5-20)	+12V	To set output of +12V dc power supply.		
A12R1 (Para. 5-22)		To eliminate any dc offset voltage in A12 Range Resistor Amplifier in order to maximize measurement accuracy on each range.		
A12C3 (Para. 5-25)		To eliminate measurement error due to stray capacitances on A12 board assembly. Maximizes measurement accuracies of 10kHz measurement.		
A12C11 (Para. 5-26)		To properly set C ZERO ADJ control range.		
A13C1 (Para. 5-25)		To eliminate measurement error due to phase error in A12 Range Resistor Amplifier output. Maximizes measurement accuracies of 10kHz measurement.		
A13R1 (Para 5-23)	OFS-1			
A13R2 (Para. 5-23)	OFS-2	To eliminate any dc offset voltage in A13 Process Amplifier in order to maximize measurement accuracies on each range.		
A13R66 (Para. 5-23)	OFS-3			
A13R67 (Para. 5-24)	OFS-4	To adjust reference phase of phase detector to minimize measurement errors.		
A14R1 (Para. 5-24)	ZOF	To adjust timing of integrator output zero detection in order to accurately set full scale display count.		
A14R15 (Para. 5-24)	АРАО	To adjust auto phase adjustment circuit output level. Minimize measurement errors due to phase detector error.		
A23R12 (Para 5-21)	VR1	To properly set operating power voltage to nanoprocessor integrated circuit.		
	<u> </u>			

Model 426

::El 4262A

Section V Table 5-2

Table 5-2. Factory Selected Components.

1		
Reference Designator	Nominal Value Range	Effect on Performance
A11R16	HP P/N: 0757-0440, R:FXD 7.5kΩ ► HP P/N: 0698-3259, R:FXD 7.87kΩ HP P/N: 0757-0441, R:FXD 8.25kΩ	Changes test signal level. If signal level is too high, use less resistance; if too low, use more resistance.
A12C1 (Para. 5-23.)	HP P/N: 0160-0159, C:FXD 6800pF ► HP P/N: 0160-0160, C:FXD 8200pF HP P/N: 0160-0161, C:FXD 10000pF	Minimizes dissipation measurement error on *100nF (100 μ F) and *10 μ H (10mH) ranges at 10kHz measurement. Refer to Paragraph 5-23 (2).
A12C2 (Para. 5-23)	▶ HP P/N: 0140-0190, C:FXD 39pF HP P/N: 0160-2201, C:FXD 51pF	Minimizes dissipation measurement error on 100pF (100nF) and *10mH (10H) ranges at 10kHz measurement. Refer to Paragraph 5-23 (4).
, A12C3 (Para. 5-23)	▶ HP P/N: 0121-0059, C:VAR 2 - 8pF HP P/N: 0121-0036, C:VAR 5.5 - 18pF	Changes adjustment range for dissi- pation measurement error on *10pF (10nF) and 100mH ranges at 10kHz measurement. Refer to Paragraph 5-23 (3).
A13C1 (Para. 5-23)	▶ HP P/N: 0121-0059, C:VAR 2 - 8pF HP P/N: 0121-0036, C:VAR 5.5 - 18pF	Changes adjustment range for dissipation measurement error on all ranges at 10kHz measurement. Refer to paragraph 5-23 (1).
A14C5	▶ HP P/N: 0160-2307, C:FXD 47pF HP P/N: 0140-0205, C:FXD 62pF HP P/N: 0160-2202, C:FXD 75pF HP P/N: 0160-2203, C:FXD 91pF	Eliminates switching transient noise from A14 phase detector output. Nominal value is usually used.

Note: Component marked (\blacktriangleright) in table is usually used.

* Ranges in PRL mode for capacitance and in SER mode for inductance. Values in () are ranges in SER mode for capacitance and in PRL mode for inductance. Section V Paragraphs 5-16 and 5-17

5-16. DUT ADJUSTMENT RECOMMENDATIONS.

5-17. If HP 16361A/16362A DUT Boxes or substitute devices are not available, user built DUT's with required characteristics may be used to adjust or to calibrate the 4262A. When it is desired to adjust the 4262A to perform to its specifications, the recommended DUT may be selected from Table 5-3. To establish accuracies appropriate for comparing the 4262A performance to its specifications, calibrate the DUT's to the accuracies given in the table. Refer to "CALIBRATION OF DUT's" (Page 4-4) for proper DUT calibration methods.

Table 5-3. DOT'S Recommended for making Aujusunents.					
Paragraph	DUT	Component	HP Part Number	Calibration Accuracy	Required Characteristic
5-24		C: 10nF	0160-0408	0.1%	D< 0.001 at 1kHz
		C: 1000pF	0160-3766	0.1%	D < 0.001 at 1kHz
		C: 10nF R: 10kΩ	0160-0408 0698-6360	*D:0.1% (at 1kHz)	
5-25		C: 100pF R: 100kΩ	0160-0336 0698-4158	*D: 0.1% (at 10kHz)	
	- ["-]-	C: 1000pF R: 10kΩ	0160-3766 0698-6360	*D: 0.1% (at 10kHz)	
	-1 -	C: 10nF R: 3kΩ	0160-0408 0698-6348	*D: 0.1% (at 10kHz)	
		C: 100nF R: 100Ω	0160-4113 0698-6323	*D: 0.1% (at 10kHz)	
		C: 100nF R: 300Ω	0160-4113 0698-6346	*D: 0.1% (at 10kHz)	
5-26	1F	C: 18pF R: 8.66kΩ	0160-2263 0698-3498	*D: 0.1% (at 10kHz)	

Table 5-3. DUT's Recommende	d for making A	Adjustments.
-----------------------------	----------------	--------------

Model 426

* For easier calibration of dissipation to the required accuracy, use accurately calibrated resistors rather than capacitors (use a high accuracy DMM to measure resistors).

B INITIAL OPERATING PROCEDURE.

preparatory to adjusting the 4262A, do no following to locate and to gain access to the dustment controls. This procedure facilitates a onprehensive adjustment of instrument.

MUNDAMENTAL OPERATING CHECKS

Confirm that instrument power line module is set for local power line voltage. Check front panel displays using "PRELIMINARY OPER-ATIONS" on Page 4-2. Offset control should be individually set for "zero" display for DUT Boxes or Test Fixtures as they are connected to 4262A UNKNOWN terminals. After attaching or interchanging test equipment, adjust front panel ZERO ADJ controls in accord with the procedure in "PRELIMINARY OPERATIONS".

TOP COVER REMOVAL

WARNING

WHEN TOP COVER IS REMOVED LIVE PARTS ARE EXPOSED.

Remove top cover as follows:

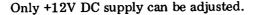
- a. Loosen the retaining screw at rear of top cover until screw is free.
- b. Pull top cover towards the rear and lift off.

WARNING

TO INSURE PERSONAL SAFETY FROM POSSIBLE ELECTRICAL SHOCK HAZARDS AND RE-SULTANT INJURY, USE INSU-LATED ADJUSTMENT TOOL. Section V Paragraphs 5-18 and 5-19

Table 5-4.	Adjustment	Requirements.
------------	------------	---------------

	Assembly Repaired or Replaced	Required Adjustments
	A1 (04262-66501) A2 (04262-66502) A3 (04262-66503) A4 (04262-66504) A5 (04262-66505)	None
	A9 (04261-77009)	Para. 5-18
	A11(04262-66511)	None
	A12(04262-66512)	Para. 5-20 and 5-22 thru 5-24
L	A13(04262-66513)	Para. 5-21 thru 5-23
	A14(04262-66514)	Para. 5-22 and 5-23
	A21(04262-66521) A22(04262-66522)	None
	A23(04262-66623)	Para. 5-19 (only if A23U1 is replaced)
	A24(04262-66524) A25(04262-66525) A35(04262-66535)	None


Model 42

5-20. DC POWER SUPPLY ADJUSTMENT.

PURPOSE:

To adjust regulated +12V DC Supply (A9).

Note

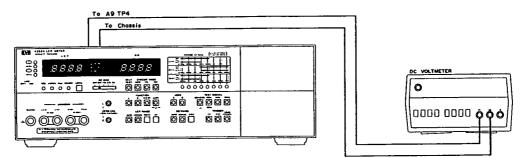


Figure 5-1. Power Supply Voltage Adjustment.

EQUIPMENT:

PROCEDURE:

- a. Connect DC voltmeter plus input to test point A9TP4 (+12V) and minus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-1.
- b. Set DC Voltmeter range as appropriate for measuring +12 volts.
- c. Adjust "+12V" potentiometer A9R6 for +12 volts±0.05 volts (see Figure 8-22 for location).
- d. After adjustment of +12V, check dc voltages at test points listed below:

Test Point	Voltage Limits	
A9TP5	-12V ±0.15V	
А9ТР6	+5V ±0.15V	

e. Remove cables and DC voltmeter from 4262A.

Notes

1. DC supply voltage ripple should be equal to or less than the allowable limits given below.

DC supply voltage	Ripple voltage	
+12V at A9TP4 -12V at A9TP5	< 30mVp-p < 30mVp-p	
+5V at A9TP6	< 50mVp-p	

Section V Paragraph 5-21

ADJUSTMENT

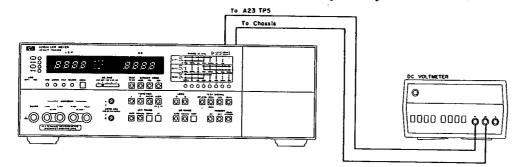
2. This adjustment is not affected by any other adjustment. If this adjustment fails to bring any of the output voltages to their specified values, refer to Section VIII Service Sheet No. 9 for troubleshooting.

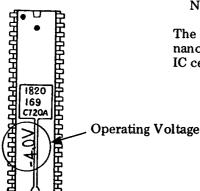
5-21. NANOPROCESSOR OPERATING POWER VOLTAGE ADJUSTMENT.

PURPOSE:

el4262A

This adjustment adjusts the operating power voltage to the nanoprocessor integrated circuit on A23 Nanoprocessor and ROM Assembly to its prescribed value.




Figure 5-2. Nanoprocessor Operating Power Voltage Adjustment Location.

EQUIPMENT:

DC Voltmeter HP 5300A/w5306A

PROCEDURE:

a. Connect DC voltmeter plus input to test point A23TP5 and minus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-2.

Note

The prescribed operating power voltage to the nanoprocessor IC (A23U1) is stamped on the IC ceramic case as shown in illustration at left.

- b. Set DC Voltmeter range as appropriate for measuring the prescribed operating voltage of A23U1 nanoprocessor.
- c. Adjust VR1 potentiometer A23R14 for the prescribed voltage to within ±0.1Vdc.
- d. Remove cables and DC voltmeter from 4262A.

Section V Paragraph 5-22

ADJUSTMENT

5-22. A12 BOARD OFFSET ADJUSTMENT.

PURPOSE:

This adjustment eliminates any residual dc offset voltage from range resistor amplifier to maximize accuracy of measurement.

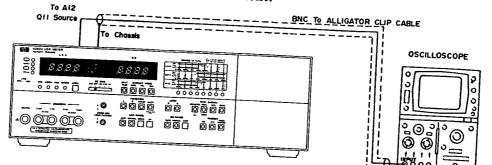


Figure 5-3. A12 Board Offset Adjustment.

EQUIPMENT:

PROCEDURE:

a. Connect BNC to dual alligator clip cable between oscilloscope and transistor A12Q11*source on the A12 Range Resistor Board Assembly (See Figure 5-3).

*(Junction of A12R36 and R41)

Model 426

]

b. Set 4262A controls as follows:

DC BIASOFF
SELF TEST
SELF TEST
CIRCUIT MODE
CIRCUIT MODEC LOSSPRL
TEST SIGNAL
LCR RANGE
MANUAL
DQ RANGE
TRIGGER AUTO
TRIGGER INT

c. Connect nothing (open, $\infty \Omega$) to UNKNOWN terminals.

Note

High terminals (HPOT and H_{CUR}) and Low terminals (L_{CUR} and L_{POT}), respectively, must be connected together.

d. Set oscilloscope control as follows:

VOLTS/DIV	
TIME/DIV	·· 0.01V
TRIGGER	. 0.5msec
SWEEP MODE	INT
Input	. AUTO
Input	GND

Section V Paragraph 5-23

ADJUSTMENT

- e. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope input mode to dc.
- g. Adjust potentiometer A12R1 until dc level of displayed waveform is 0mV ±10mV. Refer to Figure 5-4 which shows well-adjusted waveform.

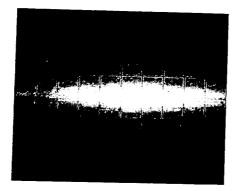
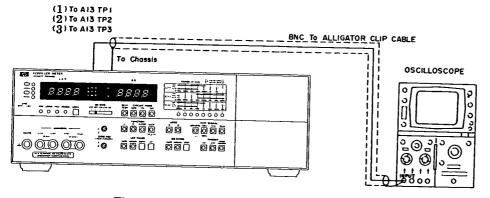


Figure 5-4. Waveform at A12Q11 Source.


Note

If adjustment is not successful, see Section VIII service sheet for troubleshooting.

5-23. A13 BOARD OFFSET ADJUSTMENT.

PURPOSE:

This adjustment eliminates any residual dc offset voltage from the A13 Process Amplifier Board Assembly.

Figure 5-5. A13 Board Offset Adjustment.

EQUIPMENT:

Section V Figure 5-6

ADJUSTMENT

Model 4262

PROCEDURE:

Note

The A12 board offset adjustment (paragraph 5-22) must precede these adjustments. The adjustments in these steps can be performed separately, but steps (1) and (2) must be performed prior to step (3).

(1) OFS - 1 ADJUSTMENT.

a. Connect BNC to dual alligator clip cable between oscilloscope and 4262A test point A13TP1 and 4262A chassis (see Figure 5-5).

b. Set 4262A controls as follows:

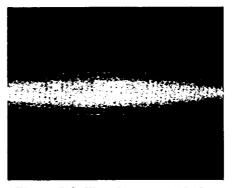
DC BIAS OFF
SELF TEST OFF
FUNCTION L
CIRCUIT MODE SER
LOSSD
TEST SIGNAL 1kHz
LCR RANGEMANUAL
(Set to 100mH range)
DQ RANGE AUTO
TRIGGER INT

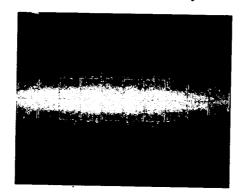
c. Short-circuit the four UNKNOWN terminals together.

d. Set oscilloscope controls as follows:

VOLTS/DIV
ΓΙΜΕ/DIV0.5msec
TRIGGER INT
SWEEP MODE AUTO
InputGND

- e. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope INPUT to DC.
- g. Adjust "OFS-1" potentiometer A13R1 until dc level of displayed waveform is 0mV ±1mV. Refer to Figure 5-6 which shows well adjusted waveform.




Figure 5-6. Waveform at A13TP1.

Model 4262A Section V Figure 5-7 ADJUSTMENT (2) OFS - 2 ADJUSTMENT. Connect BNC to dual alligator clip cable (or 1:1 oscilloscope probe) between oscilloa. scope and 4262A test point A13TP2 and 4262A chassis (see Figure 5-5). b. Change 4262A controls as follows: CIRCUIT MODE.....PRL LCR RANGEMANUAL (Set to 100pF range) c. Connect nothing (open, $\infty \Omega$) to UNKNOWN terminals. Note High terminals (HPOT and HCUR) and Low

d. Adjust "OFS-2" potentiometer A13R2 until dc level of displayed waveform is within 0mV ±1mV. Refer to Figure 5-7 which shows well adjusted waveform.

terminals (LCUR and LPOT), respectively, must

be connected together.

(3) OFS -3 ADJUSTMENT.

- a. Use 10:1 oscilloscope probe for this adjustment. Connect oscilloscope probe to 4262A test point A13TP3 and ground clip lead of probe to 4262A chassis.
- b. Change 4262A controls as follows:

Section V Figure 5-8

ADJUSTMENT

c. Adjust "OFS-3" potentiometer A13R66 until dc level of displayed waveform is $0mV \pm 10mV$. Refer to Figure 5-8 which shows well adjusted waveform.

Note

Signal observed may be somewhat noisy. Adjust offset control so that signal is equally balanced around 0 volts dc.

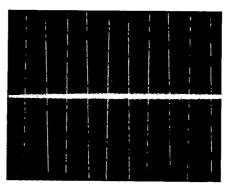


Figure 5-8. Waveform at A13TP3.

Section V Paragraph 5-24

ADJUSTMENT

5-24. A14 PHASE DETECTOR & INTEGRATOR ADJUSTMENT.

PURPOSE:

These adjustments eliminate phase error in the phase detector and properly set timing of zero detector to minimize measurement error.

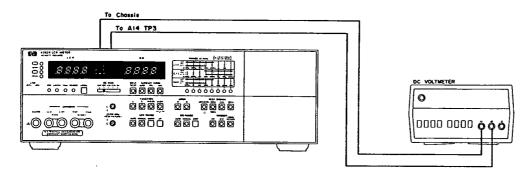


Figure 5-9. A14 Phase Detector & Integrator Adjustment.

EQUIPMENT:

DC Voltmeter	HP 5300A/w 5306A
DUT Box	HP 16361A
Test Leads	HP P/N 16361-61605

Note

If DUT box is not available, it is recommended that the following DUT's be used as standards:

DUT	Values of components	Calculated D (1kHz)	Required Calibration Accuracy		
	C: 10nF (HP P/N: 0160-0408)	D < 0.001	0.1%		
	C: 1000pF(HP P/N: 0160-3766)	D < 0.001	0.1%		
	C: 10nF (HP P/N: 0160-0408) R: 10kΩ (HP P/N: 0698-6360)	1.592	D: 0.1%		

The components listed above should be calibrated before use. Refer to "Calibration of DUT's" on page 4-4 for proper DUT calibration method.

Section V Figure 5-10

ADJUSTMENT

PROCEDURE:

(1) OFS - 4 ADJUSTMENT.

- a. Connect DC voltmeter minus input to test point A14TP3 and plus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-9.
- b. Set DC voltmeter range as appropriate for measuring +3 volts.
- c. Set integrator test switch A22S1 (located at upper right on A22 Display Control and RAM Board Assembly) to TEST 1 position. See Figure 5-10 which shows location of switch S1.

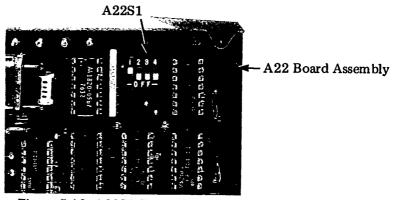
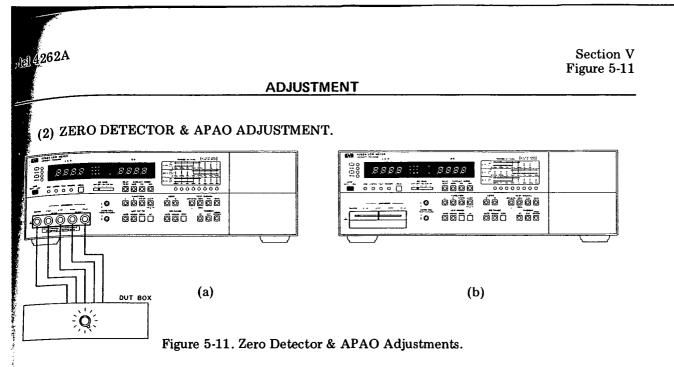


Figure 5-10. A22S1 Switch Setting.

d. Set 4262A controls as follows:


DC BIASOFF
SELF TEST OFF
FUNCTION
CIRCUIT MODE PRL
LOSS
TEST SIGNAL 1kHz
LCR RANGE AUTO
DQ RANGE AUTO
TRIGGER INT

e. Connect nothing (open, $\infty \Omega$) to UNKNOWN terminals.

Note

High terminals (H POT and H currel) and Low terminals (L currel and L POT), respectively, must be connected together.

f. Adjust "OFS-4" potentiometer A13R67 for +2 volts ±0.5 volts (the voltage is actually negative).

Note

If DUT Box is available, use procedure A. If not, use procedure B.

PROCEDURE A.

- a. Adjust "ZOF" potentiometer A14R1 for 1000 counts ±1 count on 4262A LCR display.
- b. Adjust "APAO" potentiometer A14R15 for .000 to .001 count on 4262A DQ display.
- c. Set 4262A TEST SIGNAL control successively to each test frequency and test signal level shown in Table 5-5 and confirm that DC voltmeter readings are within 0 to +4 volts at each control setting. Also confirm that 4262A LCR display and DQ display are within the tolerances described in steps a and b.

Frequency	Low Level
120Hz	off
1 kHz	off
10kHz	off
120Hz	on
1 kHz	on
10kHz	on

Table 5-5. TEST SIGNAL Settings.

Note

If result of confirmation check is not satisfactory, readjust "OFS-4" potentiometer A13R67 for any voltage between +1 volt and +3 volts to satisfy the requirements of step c. If this adjustment fails to bring the voltage at A14TP3 to within its tolerance or to satisfy the confirmation check, refer to Section VIII for troubleshooting.

ADJUSTMENT

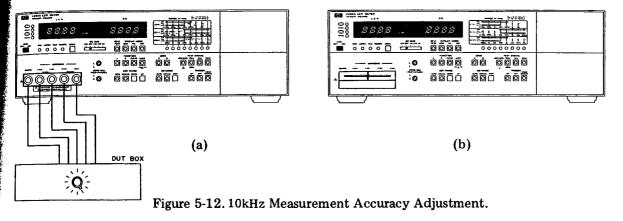
- d. Reset integrator test switch A22S1 to off.
- e. Connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16361A DUT Box as shown in Figure 5-11 (a).
- f. Set 16361A LCR RANGE to 1000pF.
- g. Note dissipation factor readout on DQ display.
- h. Manually change 4262A LCR RANGE to 10nF.
- i. The change in dissipation factor readout between that obtained in step g and that in step h should be less than ±1 count. If not satisfactory, readjust "ZOF" potentiometer A14R1 (step a).
- j. Set 4262A LCR RANGE to AUTO.
- k. Set 16361A LCR RANGE to D = 1.8.
- 1. Verify that DQ display count is the calibrated value of 16361A within ±3 counts. If this test fails, readjust "APAO" potentiometer A14R15 (step b).

PROCEDURE B.

- a. Set integrator test switch A22S1 to off.
- b. Attach HP 16061A Test Fixture to 4262A UNKNOWN terminals as shown in Figure 5-11 (b).
- c. Connect 10nF capacitor to the 16061A as DUT.
- d. Manually set 4262A LCR RANGE to 10nF.
- e. Adjust "ZOF" potentiometer A14R1 for the calibrated value of DUT ±1 count on 4262A LCR display.
- f. Adjust "APAO" potentiometer A14R15 for .000 count on 4262A DQ display.
- g. Connect a 1000pF capacitor in place of the 10nF capacitor as DUT.
- h. Adjust "ZOF" potentiometer A14R1 for.000 count on 4262A DQ display.
- i. Connect a 10nF capacitor with $10k\Omega$ parallel resistance (D \approx 1.59) in place of the 1000pF capacitor.
- j. Adjust "APAO" potentiometer A14R15 for the calibrated D value of DUT ± 2 counts on 4262A DQ display.

al 4262A

ADJUSTMENT


5-25. 10kHz MEASUREMENT ACCURACY ADJUSTMENT.

PURPOSE:

This adjustment eliminates measurement error due to stray capacitances on A12 and A13 board assemblies and maximizes measurement accuracies at 10kHz measurement.

Note

Each of the following adjustments are interrelated. To achieve correct adjustments, do not change adjustment procedure or sequence.

EQUIPMENT:

DUT Box.	 	 	•				•					•	•				Н	P :	16	362	2A
Test Leads.	 • •	 	•	• •	• •		•	•	•		. I	H	P]	P/	N:	: 1	.63	361	L-6	16	05
DUT's	 • •	 	•			• •	•	•	•	•			•	•••	Se	e	N	ote	e b	elo	w.

Note

It is recommended that the following DUT's be used as dissipation factor standards. DUT's marked with a dot (•) in the table are included in the 16362A DUT Box.

DUT	Values of components	Calculated D (at 10kHz)	Required Calibration Accuracy
	•C1::100pF (HP P/N: 0160-0336) R1: 100kΩ (HP P/N: 0698-4158)	1.592	
	•C2: 1000pF (HP P/N: 0160-3766) R2: 10kΩ (HP P/N: 0698-6360)	1.592	
^{C3} № − I⊢₩ −	C3: 10nF (HP P/N: 0160-0408) R3: 3kΩ (HP P/N: 0698-6348)	1.885	D0.1% [C0.1%]* [R.0.02%]
₽	•C4: 100nF (HP P/N: 0160-4113) R4: 100Ω (HP P/N: 0698-6323)	1.592	
^{C5 ₽5}	C5: 100nF (HP P/N: 0160-4113) R5: 300Ω (HP P/N: 0698-6346)	1.885	

*After calibrating capacitances to within 0.1% and resistances to within 0.02%, the dissipation factor tolerance is ± 0.002 for each DUT. Refer to "Calibration of DUT's" on page 4-2 for the proper DUT calibration method.

ADJUSTMENT

PROCEDURE:

(1) A13C1 Adjustment.

a. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-12 (a). If DUT Box is not available, attach 16061A Test Fixture to 4262A UNKNOWN terminals [see Figure 5-12 (b)].

b. Set 4262A controls as follows:

DC BIAS				 		•				OFF
SELF TEST										
FUNCTION										
CIRCUIT MODE.	 •		• •	 • •	•			•	 •	PRL
LOSS				 	•					D
TEST SIGNAL										
LCR RANGE										
DQ RANGE										
TRIGGER	 •	••	•	 •••	•	• •	••	•	 •	INT

c. Rotate both C and L ZERO ADJ controls fully cw.

d. Set 16362A LCR RANGE to 1000pF D = 1.8 or connect the following sample, as an alternate DUT, to 16061A:

DUT	Values of components							
_ طالب	C: 1000pF (HP P/N: 0160-3766)							
	R : 10kΩ (HP P/N: 0698-6360)							

e. Adjust capacitor A13C1 for the calibrated value of the 16362A (or DUT) ±3 counts on 4262A DQ display.

Note

If this adjustment fails to bring dissipation factor readout to within the tolerance, change A13C1 to 5.5/18 pF capacitor (HP P/N: 0121-0036) and try adjustment again.

(Confirmation Check)

Note

If 16362A is available, perform the following check. If not, proceed to A12C1 adjustment which follows.

ADJUSTMENT

f. Verify that the table below is satisfied when the tests are made by changing DUT and CIRCUIT MODE (as given in table):

	7						
16362A LCR RANGE	4262A CIRCUIT MODE	Capacitance Readout	Dissipation Factor Readout				
1000pF D=0.01			*C. V. ± 2 counts				
1000pF D=1.8		Approx. 1100 counts	*C. V. ± 3 counts				
100nF D=1.8	SER	Approx. 900 counts	*C. V. ± 5 counts				
1μF D=0.01	-II	*C. V. ± 2 counts	*C. V. ± 2 counts				
*C. V. = Calibrated Value of DUT.							

g. If table test fails, repeat step e.

(2) A12C1 Adjustment.

Note

The following A12C1 Adjustment needs to be performed only when A12R4 is replaced.

a. Set 16362A LCR RANGE to 100nF D = 1.8 or connect the following sample, as an alternate DUT, to 16061A.

C: 100nF (HP P/N: 0160-4113)
R: 100Ω (HP P/N: 0698-6323)

b. Verify that the dissipation factor readout on 4262A DQ display is the calibrated value of the DUT within a tolerance of ± 3 counts. If not within tolerance, change A12C1 to an appropriate value selected from the adjustment range below:

6800pF	HP P/N: 0160-0159
8200pF	HP P/N: 0160-0160
10000pF	HP P/N: 0160-0161

Note

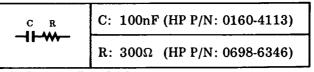
Nominal value is 6800pF. Increasing A12C1 by 1000pF increases display 2 counts.

(3) A12C3 Adjustment.

- a. Remove Test Leads and attach 16061A Test Fixture to 4262A UNKNOWN terminals.
- b. Connect the following DUT to 16061A.

	C: 10nF (HP P/N: 0160-0408)
-11	R: 3kΩ (HP P/N: 0698-6348)

ADJUSTMENT


- c. Note dissipation factor readout on 4262A DQ display.
- d. Change 4262A CIRCUIT MODE to SER.
- e. Adjust A12C3 so that capacitance readout on 4262A CRL display is the calibrated value of DUT ±2 counts and the difference in dissipation factor readout between steps c and d is less than ±5 counts.

Note

If adjustment is not successful, change A12C3 to 5.5/18pF capacitor (HP P/N: 0121-0036) and try adjustment again.

(4) A12C2 Adjustment.

a. Connect the following DUT to 16061A.

- b. Set 4262A CIRCUIT MODE to PRL.
- c. Note dissipation factor readout on 4262A DQ display.
- d. Change 4262A CIRCUIT MODE to SER.
- e. Verify that 4262A displays the following:
 - 1) Capacitance readout of CRL display should be the calibrated value of DUT ± 2 counts.
 - 2) The difference in dissipation factor readout between steps c and d should be less than ± 5 counts.
- f. If either 1) or 2) are not satisfied, change A12C2 to an appropriate value selected from the adjustment range below:

30pF	HP P/N: 0160-2139
39pF	HP P/N: 0140-0190
51pF	HP P/N: 0160-2201
62pF	HP P/N: 0140-0205

Note

Nominal value is 39pF. Increasing A12C2 by 10pF decreases capacitance and dissipation factor readouts 2 and 3 counts respectively.

Section V

ADJUSTMENT

(Confirmation check)

Note

If 16362A DUT Box is available, use procedure A. If not, use procedure B.

PROCEDURE A.

- g. Remove 16061A from 4262A UNKNOWN terminals and connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-12 (a).
- h. Set 16362A LCR RANGE to 1pF position.
- i. Set 4262A CIRCUIT MODE to PRL.
- j. Adjust C ZERO ADJ potentiometer for calibrated value of 16362A on 4262A LCR display.
- k. Set 16362A LCR RANGE to 100pF D = 1.8.
- Verify that dissipation factor readout on 4262A DQ display is the calibrated value of 16362A ±5 counts.

Note

If this confirmation check fails, repeat A12C2 adjustment.

PROCEDURE B.

- g. Set 4262A CIRCUIT MODE to PRL.
- h. Connect nothing to 16061A Test Fixture.
- i. Adjust C ZERO ADJ potentiometer for 0.00 counts (10pF range) on 4262A LCR display.
- j. Connect the following DUT to 16061A.

₋ ᠆ᡟᡰ ^ᡄ	C: 100pF (HP P/N: 0160-0336)
	R: 100kΩ (HP P/N: 0698-4158)

k. Verify that dissipation factor readout on 4262A DQ display is the calibrated value of DUT ±5 counts.

Note

If this confirmation check fails, repeat A12C2 adjustment.

ADJUSTMENT

5-26. C ZERO ADJ CIRCUIT ADJUSTMENT (A12).

PURPOSE:

To adjust C ZERO ADJ control range.

Note

No adjustment is required for L ZERO ADJ control.

EQUIPMENT:

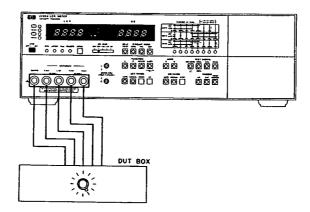


Figure 5-13. Offset Adjustment Setup.

PROCEDURE:

- 1. Connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-13. If 16362A is not available, attach 16061A Test Fixture to UNKNOWN terminals.
- 2. Set 4262A controls as follows:

DC	BIAS.					 										. (DF	Ϋ́F	
SE	LF TES	Г				 											ĴF	Ϋ́F	
FU	NCTIO	N				 •												Ċ	
CII	RCUIT I	MOD	Ε.			 •										.]	PR	Ĺ	
LO	SS																	D	
TE	ST SIG	VAL			• •										1	10	kŀ	Ιz	
LC	R RANG	GE .		•											1	AL	JT	Ο	
DQ	RANG	Ε		•							•				4	AL	JT	Ο	
TR	IGGER			•		•		•					•				IN	Т	

3. Set 16362A LCR RANGE to 19pF or connect the following DUT to 16061A:

C R	C: 18pF (HP P/N: 0160-2263)
•• •••	R: 8.66kΩ (HP P/N: 0698-3498)

ADJUSTMENT

- 4. Note capacitance and dissipation factor readout on 4262A display.
- 5. Rotate 4262A C ZERO ADJ control ccw until capacitance readout on LCR display is half that obtained in step 4 within a tolerance of ± 3 counts.
- 6. Adjust A12C11 until dissipation factor readout becomes double that obtained in step 4 within a tolerance of ± 2 counts.

Note

Because A12C11 and C ZERO ADJ controls interact with each other, maintain capacitance readout obtained in step 5 by controlling C ZERO ADJ until A12C11 is properly adjusted.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematics and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used.

6-5. REPLACEABLE PARTS LIST.

6-6. Table 6-3 is a list of replaceable parts and is organized as follows:

- a. Electrical assemblies and their components in alphanumerical order by reference designation.
- b. Chassis-mounted parts in alphanumerical order by reference designation.
- c. Miscellaneous parts.
- d. Illustrated parts breakdowns, if appropriate.

The information for each part includes:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.

Table 6-1. List of Reference Designators and Abbreviations

			REFERENCE DES	IGNATORS			
A	= assembly	Е	= misc electronic part				
в	= motor	F	= fuse	P	= plug	U	= integrated circuit
BT	= battery	FL	= filter	Q	= transistor	v	= vacuum, tube, neon
С	= capacitor	J	= iack	R	= resistor		bulb, photocell, etc.
CP	= coupler	ĸ	= relav	RT	= thermistor	VR	= voltage regulator
CR	= diode	L	= inductor	S	= switch	w	= cable
DL	= delay line	M	= meter	T_	= transformer	х	= socket
DS	= device signaling (lamp)	MP	= meter	TB	= terminal board	Y	= crystal
	0 0 0 (min),		- meenanical part	TP	= test point		
			ABBREVIAT	IONS			
A	= amperes	н	= henries	NPN			
A. F. C.	. = automatic frequency control	HEX	= hexagonal	IN 1*14	= negative-positive-	RWV	= reverse working
AMPL	= amplifier	HG	= mercury	NRFR	negative		voltage
BFO	= beat frequency oscillator	HR	= hour(s)	NRTR	= not recommended for		-
BE CU	= beat frequency oscillator = beryllium copper	Hz	= hertz	NCD	field replacement		
ВН	= berynnum copper	_	- hercz	NSR	= not separately	S-B	= slow-blow
BP	= binder head	IF	= intermediate freq.		replaceable	SCR	= screw
BRS	= bandpass = brass	IMPG	≃ impregnated			SE	= selenium
BWO		INCD	= incandescent	OBD	= order by description	SECT	= section(s)
	= backward wave oscillator	INCL	= include(s)	OH	= oval head	SEMICON	= semiconductor
CCW	= counter-clockwise	INS	= insulation(ed)	OX	= oxide	SI	= silicon
CER	= ceramic	INT	= internal		Shide	SIL	= silver
Смо	= cabinet mount only	k	= kilo = 1000			SL	= slide
COEF	= coefficient		= KHO = 1000	Р	= peak	SPG	= spring
СОМ	= common	LH	= left hand	PC	= printed circuit	SPL	= special
OMP	= composition	LIN	= linear taper	p	= pico = 10^{-12}	SST	= stainless steel
OMPL	= complete	LK WASH	= lock washer	PH BRZ	= phosphor bronze	SR	= split ring
ONN	= connector	LOG	= logarithmic taper	PHL	= phosphor bronze = Phillips	STL	= steel
2P	= cadmium plate	LPF	= low pass filter	PIV			- 5000
RT	= cathode-ray tube		in page inter	PNP	= peak inverse voltage	ТА	= tantalum
W	= clockwise	m	= milli = 10 ⁻³	PNP	= positive-negative-	TD	= time delay
		M	$= meg = 10^{6}$	P/0	positive	TGL	= toggle
DEPC	= deposited carbon		= meg = 10 = metal film		= part of	THD	= toggie
R	= drive	MET OX	= metallic oxide	POLY	= polystyrene	TI	= titanium
LECT	= electrolytic	MFR	= manufacturer	PORC	= porcelain	TOL	= tolerance
NCAP	= encapsulated	MINAT	= manufacturer = miniature	POS	= position(s)	TRIM	= toierance = trimmer
XT	= encapsulated = external	MOM	= miniature = momentary	POT	= potentiometer	TWT	
	- external	MTG		PP	= peak-to-peak	1.41	= traveling wave tube
	= farads	MY	= mounting = ''mylar''	PT	= point		= micro = 10 ⁻⁶
	= femto = 10 ⁻¹⁵	<i></i>		PWV	= peak working voltage	μ	= micro = 10 -
н	= flat head	n	$= nano = 10^{-9}$		5	VAR	= variable
IL H	= fillister head	N/C	= normally closed			VDCW	= dc working volts
	= fixed	NE	= neon	RECT	= rectifier	-	5
	_	NI PL	= nickel plate	RF	= rectifier = radio frequency	w/	= with
E	$=$ giga $= 10^9$	N/O	= normally open	RH	= round head or	W	= watts
e. L	= germanium	NPO	= negative positive zero		round nead or right hand	WIV	= working inverse
-	= glass		(zero temperature	RMO			voltage
a D	= ground(ed)		coefficient)	RMS	= rack mount only		= wirewound
				ama	= root-mean square	w/o	= without

Section VI Paragraphs 6-7 to 6-14

)

- c. A description of the part.
- d. A typical manufacturer of the part in a five-digit code.
- e. The manufacturer's number for the part.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, the description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office.

6-10. SPARE PARTS KIT.

6-11. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a Spare Parts Kit available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the Recommended Spares List are based on failure reports and repair data, and parts support for one year. A complimentary Recommended Spares List for this instrument may be obtained on request and the Spare Parts Kit may be ordered through your nearest Hewlett-Packard office.

6-12. DIRECT MAIL ORDER SYSTEM.

6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are:

- a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
- b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing).
- c. Prepaid transportation (there is a small handling charge for each order).
- d. No invoices to provide these advantages, a check or money order must accompany each order.

6-14. Mail order forms and specific ordering information is available through your local HP Office. Addresses and phone numbers are located at the back of this manual.

Table $6-2$.	Manufacturers	Code List.
---------------	---------------	------------

MFR NO.	MANUFACTURER NAME	ADDRESS		ZIP CODE
0024E 0138J 0160G 0169H 03888 0203G 0217B 0223G 07933 0248C 0248D 0291J 0299E 0325I 0329B 0340F 0341B 28480 0365A 0374D 0379D 0379I 0420J 0450G 72136 73138 73899 04678 76381 0552D 28480	JERMYN INDUSTRIES AMP INC ALLEN-BRADLEY CO TEXAS INSTR INC SEMICOND COMPNY DIV KDI PYROFILM CORP MOTOROLA SEMICONDUCTOR PRODUCTS AIRCO SPEER ELEK DIV AIR RDCN CO FAIRCHILD SEMICONDUCTOR DIV RAYTHEON CO SEMICONDUCTOR DIV HQ CTS OF BERNE INC CTS KEENE INC SIGNETICS CORP MEPCO/ELECTRA CORP STANFORD APPLIED ENGINEERING INC CORNING GLASS WORKS (BRADFORD) NATIONAL SEMICONDUCTOR CORP CORNING GLASS WORKS (WILMINGTON) HP DIV 00 CORPORATE MEPCO/ELECTRA CORP BOURNS INC TRIMPOT PROD DIV ADVANCED MICRO DEVICES INC HARRIS SEMICON DIV HARRIS-INTERTYPE SPRAGUE ELECTRIC CO TRW ELEK COMPONENTS CINCH DIV ELECTRO MOTIVE CORP SUB IEC BECKMAN INSTRUMENTS INC HELIPOT DIV J F D ELECTRONICS CORP TRW INC PHILADELPHIA DIV 3M COMPANY DALE ELECTRION FOR THIS MFG NUMBER	HARRISBURG MILWAUKEE DALLAS WHIPPANY PHOENIX NOGALES MOUNTAIN VIEW MOUNTAIN VIEW C BERNE PASO ROBLES SUNNYVALE MINERAL WELLS SANTA CLARA BRADFORD SANTA CLARA BRADFORD SANTA CLARA WILMINGTON PALO ALTO SAN DIEGO RIVERSIDE SUNNYVALE MELBOURNE NORTH ADAMS ELK GROVE VLGE WILLIMANTIC CT FULLERTON BROOKLYN PHILADELPHIA ST PAUL COLUMBUS	PA WI TX NJ AZ CA CA CA CA CA CA CA CA CA CA CA CA CA	07981 94040 06226 92634 11219 55101

6-2

Table	6-3.	Replaceable	Parts.
-------	------	-------------	--------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 1	04262-66501 04262-26501	1	MOTHER BOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04262=66501 04262=26501
ALJI	1251-3004	1	CONNECTOR 40-PIN M RECTANGULAR	76381	3932-2002
A1XA9L A1XA9R A1XA11L A1XA11R A1XA12L A1XA12R	1251+1886 1251+1886 1251-1886 1251-1886 1251-1886 1251-1886	20	CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	0450G 0450G 0450G 0450G 0450G 0450G	252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340
A1XA13L A1XA13R A1XA14L A1XA14R A1XA21L A1XA21L A1XA21R	1251-1886 1251-1886 1251-1886 1251-1886 1251-1886 1251-1886		CONNECTOR-PC EDGE 13-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	0450G 0450G 0450G 0450G 0450G 0450G	252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340
A1 X A2 2L A1 X A2 2R A1 X A2 3L A1 X A2 3M A1 X A2 0L A1 X A2 0L A1 X A2 0R	1251-1886 1251-1886 1251-1886 1251-1886 1251-1886 1251-1886		CONNECTOR-PC LOGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	0450G 0450G 0450G 0450G 0450G 0450G	252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340 252-15-30-340
A1×A25L A1×A25P	1251+1886 1251-1886		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS Connector-PC EDGE 15-Cont/Row 2-Rows	0450G 0450G	252-15-30-340 252-15-30-340
42	04262-66502 04262+26502	1	KEYBOARD & DISPLAY ASSEMBLY PC HOARD, BLANK	28480 28480	04262+66502 04262+26502
4201	0160-0291	•	CAPACITOR-FXD 1UF++10% 35VDC TA	0420J	1500105×903542
42051 42052 42053 42034 42034 42035	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	37	LED-VISIBLE LUM-INTEINCD IFE20MA-MAX LED-VISIBLE LUM-INTEINCD IFE20MA-MAX LED-VISIBLE LUM-INTEINCD IFE20MA-MAX LED-VISIBLE LUM-INTEINCD IFE20MA-MAX DISPLAY-NUM SEG 1-CHAR "3-M	28480 28480 28480 28480 28480 28480	1990-0486 1990-0486 1990-0486 1990-0486 1990-0452
A2036 A2037 A2038 A2059 A2059 A20510	1990-0434 1990-0434 1990-0434 1990-0434 1990-0517 1990-0517	7 15	DISPLAY-NUM SEG 1-CHAR "3-H DISPLAY-NUM SEG 1-CHAR "3-H DISPLAY-NUM SEG 1-CHAR "3-H LED-VISIBLE LUM-INT=SMCD IF=20MA-MAX LED-VISIBLE LUM-INT=SMCD IF=20MA-MAX	28480 28480 28480 28480 28480 28480	1990-0434 1990-0434 1990-0434 1990-0517 1990-0517
A2US11 A2DS12 A2US13 A2US13 A2DS14 A2DS15	1990-0517. 1990-0517 1990-0517 1990-0517 1990-0517 1990-0517		LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX LeD-VISIBLE LUM-INT#3MCD IF#20MA=MAX LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX	28480 28480 28480 28480 28480 28480	1990-0517 1990-0517 1990-0517 1990-0517 1990-0517
A2D316 420517 A2D318 A2D319 A2D319 A2D320	1990-0517 1990-0517 1990-0517 1990-0517 1990-0517 1990-0434		LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX LED-VISIRLF LUM-INT#3MCD IF#20MA=MAX LED-VISIRLE LUM-INT#3MCD IF#20MA=MAX LED-VISIBLE LUM-INT#3MCD IF#20MA=MAX DISPLAY=NUM SEG 1=CMAH .3=H	28480 28480 28480 28480 28480 28480	1990-0517 1990-0517 1990-0517 1990-0517 1990-0517 1990-0434
A2US21 A2OS22 A2OS23 A2OS23 A2OS24 A2OS25	1990-0434 1990-0434 1990-0434 1990-0486 1990-0486		DISPLAY-NUM SEG 1-CHAR ,3-H DISPLAY-NUM SEG 1-CHAR ,3-H DISPLAY-NUM SEG 1-CHAR ,3-H LED-VISIRLE LUM-INT=1MCD IF=20MA-MAX LED-VISIRLE LUM-INT=1MCU IF=20MA-MAX	28480 28480 26480 28480 28480 28480	1990-0034 1990-0034 1990-0034 1990-0486 1990-0486
A2US26 A2DS27 A2DS28 A2DS29 A2DS29 A2DS30	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486		LED-VISIBLE LUM-INTRINCD IF=20MA-MAX LED-VISIBLE LUM-INTRINCD IF=20MA-MAX LEC-VISIBLE LUM-INTRINCD IF=20MA-MAX LED-VISIBLE LUM-INTRINCU IF=20MA-MAX LED-VISIBLE LUM-INTRINCU IF=20MA-MAX	28480 28480 28480 28480 28480 28480	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486
420531 420532 420533 420533 420534 420535	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486		LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX	28480 28480 28480 28480 28480 28480	1990-0480 1990-0486 1990-0486 1990-0486 1990-0486
420936 420917 420338 420339 420339	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486		LED-VISIBLE LUM-INT#IMCD IF#20MA-MAX LED-VISIBLE LUM-INT#IMCD IF#20MA-MAX LED-VISIBLE LUM-INT#IMCD IF#20MA-MAX LED-VISIBLE LUM-INT#IMCD IF#20MA-MAX LED-VISIBLE LUM-INT#IMCD IF#20MA-MAX	28480 28480 28480 28480 28480 28480	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486
4203a1 4203a2 4203a3 4203a3 4203a5	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486 1990-0486		LED-VISIBLE LUM-INTEINCO IFE20MA-MAX LED-VISIBLE LUM-INTEINCO IFE20MA-MAX LED-VISIBLE LUM-INTEINCO IFE20MA-MAX LED-VISIBLE LUM-INTEINCO IFE20MA-MAX LED-VISIBLE LUM-INTEINCO IFE20MA-MAX	28480 28480 28480 28480 28480 28480	1990-0480 1990-0480 1990-0480 1990-0480 1990-0480

Table	6-3.	Replaceable	Parts	(Cont'd).
-------	------	-------------	-------	-----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2DS46 A2DS47 A2D548	1990-0486 1990-0486 1990-0486 1990-0486		LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX	28480 28480 28480 28480 28480	1990-0486 1990-0486 1990-0486
A20849 A20850	1990+0486		LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX	28480 28480	1990=0480 1990=0486
A20351 A20852	1990-0486		LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX	28480 28480	1990-0486
A20353 A20354 A20355	1990=0486 1990=0486 1990=0486		LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX LED-VISIBLE LUM-INTEIMCD IF=20MA-MAX	28480 28480	1990+0486 1990+0486
A20356	1990=0486		LEU-VISIBLE LUM-INTEIMCD IFE20MA-MAX	28480	1990-0486
1 L5A 5 L5A	1200-0474	A	SOCKET-IC 14-CONT DIP-SLOR Socket-IC 14-Cont Dip-Slor	03251 17560	CSA+3100-148 CSA+3100+148
42J3	1200-0474		SUCKET-IC 14-CONT DIP-SLOH SOCKET-IC 14-CONT DIP-SLOR	03251 17560	CSA=3100=148 CSA=3100=148
8219 8215	1200-0474		SUCKET+1C 14-CONT DIP-SLOR	03251	C54-3100-14H
6236 7154	1200-0474		SUCKET-IC 14-CONT DIP-SLOR SOCKET-IC 14-CONT DIP-SLOR	03251 03251	C34=3100=14H C34=5100=14H
AZJA	1200-0474		SUCKET-IC 14-CONT DIP-SLDR	03251	CS4-3100-148 CB4715
42R1 42R2	0683+4715 0683+4715	37	RESISTOR 470 52 .25W FC TC==400/+600 RESISTOR 470 52 .25W FC TC==400/+600	01606	CB4715
4283 4284	0683-4715		RESISTOR 470 5% 25% FC TC=400/+600 RESISTUR 470 5% 25% FC TC=400/+600	0160G 0160G	C84715 C84715
4285	0683-2715	20	RESISTOR 270 5% .25W FC TC#+400/+600	01606	CB2715
42R6 42R7	0683-2715 0683-2715		RESISTOR 270 5% 25W FC TC==400/+600 RESISTOR 270 5% 25W FC TC==400/+600	0160G 0160G	C82715 C82715
42R8 42R9	0683-2715 0683-2715		RESISTOR 270 5% .25# FC 1C#+400/+600	0160G 0160G	C82715 C82715
A2R10	0683-2715		RESISTOR 270 5% 25% FC 1C#-400/+600 RESISTOR 270 5% 25% FC 1C#-400/+600	0160G	CB2715
42R11 42H12	0663-4715		RESISTOR 470 5% 25% FC TC#-400/+600 RESISTOR 470 5% 25% FC TC#-400/+600	0160G 0160G	C84715 C84715
A2813	0683-4715 0683-4715		RESISTOR 470 5% .25W FC TC==400/+600 RESISTOR 470 5% .25W FC TC==400/+600	0160G 0160G	C84715 C84715
A2R14 A2R15	0683-4715		RESISTOR 470 5% .25W FC TC#-400/+600	0160G	CH4715
A2R16 A2R17	0683-4715 0683-4715		RESISTOR 470 5% .25% FC TC==400/+600 RESISTOR 470 5% .25% FC TC==400/+600	0160G 0160G	C84715 C84715
A2R18	C683-4715		RESISTOR 470 5% .25% FC 1C=-400/+690	0160G	C84715 5060-9436
4231	5060-9436	2A 2	SWITCH, PUSHBUTTON KEY CAP	28480 28480	5041-0342
4252	5060-4802		SLIDE ASSEMBLY SPRINGIDETENT	28480 28480	5060-4802 5020-3440
A283	5060-9430 5041-0351	u	SWITCH, PUSHBUTTON Méy Cap	28480 28480	5060≠9436 5041≠0351
A284	5000-9436 5041-0351		SWITCH, PUSHBUTTON Key Cap	28480 28480	5060-9430 5041-0351
4255	5060-9436		SWITCH, PUSHBUTTON	28480	5060-9436 5041-0351
4256	5041-0351 5060-9436 5041-0351		KEY CAP Switch, pushbutton Key Cap	28480	5060=9436 5041=0351
4257	5041-0351 5060-9436		SWITCH, PUSHBUTTON	28480	5080+9438
425R	5041-0252 5060+9436	•	SWITCH, PUSHBUTTON	28480 28480	5041=0252 5060=9436
4239	5041+0252	1	KEY CAP SWITCH, PUSHBUTTON	28480 28480	5041-0252 5060-9436
	5041-0252		KEY CAP	28480	5041-0252
A2510	5060-9436 5041-0318	u	SWITCH, PUSHBUTTON Key Cap	28480 28480	5060-9436 5041-0318
42511	5060-9436 5041-0252		SWITCH, PUSHBUTTON *EY CAP	28480 28480	5060-9436 5041-0252
42512	5060-9436 5041-0252		SWITCH, PUSHBUTTON KEY CAP	28480 28480	5060+9436 5041=0252
42513	5060+9436		SWITCH, PUSHBUTTON	28480 28480	5060=9436 5041=0318
A2314	9041-0318 5060-9436		KEY CAP SWITCH, PUSHBUTTON	28480	5060+9436
42515	5041-0408 5060-9436		KEY CAP SWITCH, PUSHBUTTON KEY CAP	28480 28480 28480	5041=0408 5060=9436 5041=0518
42514	5041=0318 5060=9436		RET LAP SWITCH, PUSHBUTTON	28480	5060-9456
42516 42517	5041=0318 5060=9436		KEY CAP SWITCH, PUSHBUTTON	28480 28480	5041=0318 5060=9436
	5041-0318		KEY CAP SWITCH, PUSHBUTTON	28480 28480	5041-0318 5060-9436
A2S18	5041+0318		KEY CAP	28480	5041-0318
42819	5060-9436 5041-0309		SWITCH, PUSHBUTTON KEY CAP	28480 28480	5060-9436 5041-0309
42520	5060-9436		SWETCH, PUSHBUTTON KEY CAP	28480 28480	5060-9436 5041-0309
42521	5060-9436		SWITCH, PUSHBUTTON KEY CAP	28480 28480	5060+9436 5041+0316

See introduction to this section for ordering information

Section VI Table 6–3

Table 6-3.	Replaceable	Parts	(Cont'd).
------------	-------------	-------	-----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2522 A2523 A2524	5060-9436 5041-0318 5060-9436 5041-0309 5060-9436 5041-0318		SWITCH, PUSHBUTTON Key Cap Switch, Pushbutton Key Cap Switch, Pushbutton Key Cap	28480 28480 28480 28480 28480 28480 28480	5060=9436 5041=0318 5060=9436 5060=9436 5060=9436 5060=9436
A2525 A2926	5060-9436 5041-0318 5060-9436 5041+0318		SWITCH, PUSHBUTTON Key Cap Switch, pushbutton Key Cap	28480 28480 28480 28480	5060-9436 5041-0318 5060-9436 5041-0318
A2U1 A2U2 A2U3 A2U4	1820=1200 1820=0491 1820=0491 1820=0491 1820=0491	5 4	IC INV TTL LS HEX 1=INP IC DCDH TTL BCD=TO=DEC 4=TO=10=LINE IC DCDH TTL BCD=TO=DEC 4=TO=10=LINE IC DCDH TTL BCD=TO=DEC 4=TO=TO=LINE	0169H 0169H 0169H 0169H	SN741305N SN74145N SN74145N SN74145N SN74145N
42#1 42#2	8120+0365 8120+0362	1 1	CABLE ASSEMBLY, 40+PIN Cable Assembly, 34+PIN	28480 28480	8120=0365 8120=0362
43	04262-66503 04262-26503	1	MP-IB CONNECTUR BOARD ASSEMBLY PC HOARD, BLANK	28480 28480	04262-66503 04262-26503
43J1 43J2	1251=3283 1200+0485	1 1	CUNNECTOR 24+PIN F MICRORIBBON Socketiic 14+PIN PC Mounting	28480 28480	1251-3283 1200-0485
A351	3101+1973	1	SWITCH-SE 7-14-N8 DIP-SLIDE-ASSY .14	0248D	11P-1028
43w1	8120=0303	1	CABLE ASSEMBLY	28480	8120=0363
A4	04262-66504	1	THUMRWHEEL SWITCH BOARD ASSEMBLY PC BOARD, ALANK	28480 28480	04262-66504 04262+26504
A4J1 A4J2 A4J3 A4J4 A4J4	1251-0739 1251-0739 1251-0739 1251-0739 1251-0739 1251-0739	16	CONNECTOR, PC 1 X 5 CONTACT CONNECTOR, PC 1 X 5 CONTACT	28480 28480 28480 28480 28480 28480	1251-0739 1251-0739 1251-0739 1251-0739 1251-0739 1251-0739
AQJ6 AQJ7 AQJ8 AQJ9 AQJ9	1251-0739 1251-0739 1251-0739 1251-0739 1251-0739 1251-0739		CONNECTOR, PC 1 X 5 CONTACT CONNECTOR, PC 1 X 5 CONTACT	28480 28480 28480 28480 28480 28480	1251=0739 1251=0739 1251=0739 1251=0739 1251=0739 1251=0739
44J11 44J12 44J13 44J14 44J14	1251-0739 1251-0739 1251-0739 1251-0739 1251-0739 1251-0739		CONNECTOR, PC 1 X 5 CONTACT CONNECTOR, PC 1 X 5 CONTACT	28480 28480 28480 28480 28480 28480	1251=0739 1251=0739 1251=0739 1251=0739 1251=0739 1251=0739
44J16 44J17	1251+0734 1200-0438	5	CONNECTOR, PC 1 X 5 CONTACT SuckEt+1C 16+CONT DIP+SLDR	28480 0138j	1251=0739 583529=1
44~1	6120-0364	1	CAHLE ASSEMBLY, FLAT	28480	8120-0364
45	04262+66505 04262+26505	1	COMPANATOR REVBOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04202+06505 04202+26505
45051 45052 45053 45084 45085	1990-0517 1990-0521 1990-0517 1990-0517 1990-0521	2	LED-VISIBLE LUM-INT#3MCD IF#20MA-MAX LED-VISIBLE LUM-INT#2,2MCD IF#5UMA-MAX LED-VISIBLE LUM-INT#3MCD IF#20MA-MAX LED-VISIBLE LUM-INT#3MCD IF#20MA-MAX LED-VISIBLE LUM-INT#2,2MCD IF#50MA-MAX	28480 28480 28480 28480 28480 28480	1990-0517 1990-0521 1990-0517 1990-0517 1990-0521
45036	1990-0517		LED-VISIBLE LUM-IN1=3MCD IF=20MA-MAX	28480	1990-0517
4551	5060-9436 5041-0342		SWITCH, PUSHBUTTON KEY CAP	28480 28480	5000-9430 5041-0542
4582	5060-9436 5041-0309 5060-9436		SWITCH, PUSHBUTTON Key Cap Swijch, pushbutton	28480 28480 28480	5060=9436 5041=0309 5060=9430
4541	5041-0252 8120-0361	1	KEY-CAP Cable Assembly	28480 28480	5041+0252 8120-0361
46			NOT ASSIGNED		
47			NUT ASSIGNED		
48			NOT ASSIGNED		

		- •
Table 6-3.	Replaceable Parts	(Cont'd).

Reference	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Designation	04261-77009	 !	POWER SUPPLY BOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04261-77009 04261-87009
A9C1 A9C2 A9C3 A9C3	04261=87009 0180=1057 0180=1057 0180=1057 0180=1057 0180=1056	1 3 2	CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 1000 UF 25VDC AL ELECT CAPACITORIFXD 1000 UF 25VDC AL ELECT	28480 28480 28480 28480 28480 28480	0180-1057 0180-1057 0180-1057 0180-1056 0180-1056
A9C8 A9C5 A9C6 A9C7 A9C8	0180-1055 0140-0200 0180-0814 0180-0814	2 3	CAPACITORIEXD 1000 OF 2500 11 CLCO CAPACITORIEXD 1000F +-5X 300VDC MICA0+70 CAPACITORIEXD 1000F +100-10X 16VDCW AL CAPACITORIEXD 1000F +100-10X 16VDCW AL	72136 28480 28480 28480 28480	DM15F391J0300WV1CR 0180-0814 0180-0814 0180-0814
49C9 49CR1	0180+0814 1901-0257 1901-0237	s	DIODEISI, RECTIFIER BRIDGE, 200V DIODEISI, RECTIFIER BRIDGE, 200V	28480 28480	1901-0237 1901-0237
49CR2 4901 4902 4903	1854-0039 1854-0071 1854-0071	1 20	THANSISTOR NPN 2N30535 SI T0-39 PD#1W THANSISTOR NPN SI PD#300MA FT#200MHZ THANSISTOR NPN SI PD#300MA FT#200MHZ THANSISTOR NPN SI PD#300MA FT#200MHZ	0203G 28480 28480 28480 28480	2N3055 1854-0071 1854-0071 1854-0071
A9G4 A9K1 A9K2 A9K3 A9K4 A9K5	1854-0071 0811-2771 0811-1746 06%3-1025 0811+1746 0757-0436	1 2 20	RESISTOR .18 5X 3W PW TC=0+-90 RESISTOF .36 5X 2W PM TC=0+-800 RESISTOR 1K 5X 225W FC TC=+400/+600 RESISTOR .56 5X 2W PM TC=0++800 RESISTOR 5,11K 1X .125W F TC=0+-100	05520 04678 0160G 04678 03298	65-28 hmi2-36/100-J CH1025 dmi2-36/100-J C4+1/8-T0-5111-F
4985 4986 4987 4988 4988 4989	2100-2521 0757-0440 0757-0289 0698-4020 0757-0442	1 1 1 1 4	RESISTOR+TRMR 2K 10% C SIDE+4UJ 1+TRN RESISTOR 7.5K 1% .125% F TC=0+=100 RESISTOR 13.5K 1% .125% F TC=0+=100 RESISTOR 9.51K 1% .125% F TC=0+=100 RESISTOR 10K 1% .125% F TC=0+=100	0365A 0329H 0299E 0329B 0329B	ET50x202 C4-1/8-T0=7501=F MFuC1/8=T0=1332=F C4-1/8=T0=9531=F C4-1/8=T0=1002=F
49810 49811 49812 49813 49814 49845	0757-0442 6696-3155 0698-3155 0698-3431 0757-0420	5	RESISTOR 10K 1% .125W F TC#0++100 RESISTOR a.64K 1% .125W F TC#0++100 RESISTOR a.64K 1% .125W F TC#0++100 RESISTOR 23.7 1% .125W F TC#0++100 RESISTOR 750 1% .125W F TC#0++100	03298 03298 03688 03688 03298	(4-1/8-10-1002=F (4-1/8-10-4041=F (4-1/8-10-4041=F pm(55-1/8-10-23R7=F (4-1/8-10-751=F
49815 49816 49817	0698-3427 0757-0317	1 2	RESISTOR 13.3 1% .125W F TC=0++100 RESISTOR 1.33% 1% .125W F TC=0+-100	03886 89520	PML55=1/8=T0=13H5=F C4=1/8=T0=1331=F
4901 4907 4903 4900	1826-0271 1820-0190 1826-0271 1826-0271	4	IC 741 0P AMP IC 723 V RGLTN IC 741 0P AMP IC 741 0P AMP	0340F 0223G 0340F 0340F	LM701CN 723MC LM701CN LM701CN
	5040-3304 04261-50022	9 5 1	AG MISCELLANEOUS PAHIS Holder, capacitur Supporter, board	28480 28480	5040-5304 04261-50022
A10			NOT ASSIGNED		
411	04262-66511 04262-26511		PC BOARD, BLANK	28480 28480	04262+66511 04262+26511
A11C1 A11C2 A11C3 A11C4 A11C5	0140-2396 0160-2200 0180-1051 0180-1051 0180-1052	1 1 20 4	CAPACITOR. FXD 43PF ++54 50000 CAPACITOR, FXD 100 UF 16V M CAPACITUR, FXD 100 UF 16V M	0420J 28480 28480 28480	3901046075JP4 0160-2200 0180-1051 0180-1051 0180-1052
A11C6 A11C7 A11C8 A11C8 A11C9 A11C10	0180-1051 0180-1051 0160-1664 0160-1664 0160-0228	1	CAPACITUR, FXD 100 UF 16V M CAPACITUR, FXD 100 UF 16V M CAPACITOR, FXD 3300 PF 50V CAPACITOR, FXD 3300 PF 50V CAPACITUR-FXD 22UF+=10A 15VDC TA	04507 58480 58480 58480 58480 58480 58480	01+0-1051 01+0-1064 01:00-1064 1500226X901562
A11C11 A11C12	0180-0228		CAPACITOR=FKD 22UF+=10% 15VDC TA CAPACITOR, FXD 220 UF 6.3V M	0420J 28480	0180-1052
A11CR1 A11CR2 A11CR3 A11CR3 A11CR4 A11CR5	1902-0688 1901-0025 1901-0025 1901-0025 1901-0025	1	0100E+GEN PRP 100V 200MA DO-7 D100E+GEN PHP 100V 200MA DO-7 D100E+GEN PRP 100V 200MA DO-7	28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0025
A11CR6 A11CR7 A11CR8 A11CR8 A11CR9 A11CR10	1901-0040 1901-0040 1902-3036 1902-3149 1902-3149 1901-0040		DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 I DIODE-INN 3.16V 5X D0-7 PD1.4W TC*-064 DIODE-INN 9.09V 5X DD-7 PD1.4W TC*-067 DIODE-INN 9.09V 5X DD-7 PD1.4W TC*-057 DIODE-SWITCHING 30V 50MA 2NS D0-35	26480	1901-0040 52 10939-36 FZ7256 1901-0040
A11CR11 A11CR12 A11CR13	1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS D)-35	28480 28480 28480	1901-0040
			for ordering infor	mation	

See introduction to this section for ordering information

4.

Table 6-3. Replaceable Parts (Co	ont'd)	į
----------------------------------	--------	---

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
411K1 411K2 411K3 411K4	0490-0234 0490-0234 0490-0234 0490-0234 0490-0226	3	RELAY, REED RELAY, REED RELAY, REED RELAY, REED RELAYJREED	28480 28480 28480 28480 28480	0490+0234 0490-0234 0490-0234 0490-0220
A1101 A1102 A1103 A1104 A1104	1854-0071 1853-0020 1854-0071 1855-0082 1854-0071	26	TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR PNP SI PD#300MW FT#150MHZ TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR MOSFET P=CHAN D=MODE SI TRANSISTOR NPN SI PD#300MM FT#200MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1854-0020 1854-0071 1855-0082 1855-0082
A1106 A1107 A1108 A1109 A1109 A11010	1854-0071 1854-0071 1854-0071 1855-0091 1855-0091	22	TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR J=F&T N=CHAN D=MODE SI TRANSISTOR J=F&T N=CHAN D=MODE SI	28480 28480 28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1855-0091 1855-0091
411011 411012 411013 411014 411015	1 855-0062 1 855-0062 1 853-0020 1 853-0020 1 853-0020	9	TRANSISTOR J=FET N=CHAN D=MODE ST TRANSISTOR J=FET N=CHAN D=MUDE SI TRANSISTOR PNP SI PD=500MH FT=150MHZ TRANSISTOR NPN SI PD=300MH FT=700MHZ TRANSISTOR PNP SI PD=300MH FT=150MHZ	28480 28480 28480 28480 28480 28480	1855-0062 1855-0062 1853-0020 1854-0071 1854-0020
411016	1853-0020		TRANSISTOR PNP SI PDESCOMM FTEISOMHZ	28480	1853-0020
411R] 411R2 411R3 411R4 411R4	0768-0001 0643-3335 0698-4418 0643-5605 0683-5605	1 39 1 22	PLSISTOR 1# 10X 3# MD TC=0+-250 PLSISTOR 33% 5X .25# FC TC=+400/+800 PLSISTOP 205 1X .125# F TC=0+-100 RESISTOR 56 5X .25# FC TC=+400/+500 HESISTOR 56 5X .25# FC TC=+400/+500	03418 0160G 03298 0160G	FP3-3-250+1001-K CB3335 C4-1/B-T0+205R-F CB5605
41186 41187 41188 41189 411810	0757-0465 0757-0442 0698-0083 0698-0083 0757-0405	4 2 2	RESISTOR 100K 12 .125W F TC=00+=100 RESISTOR 10K 12 .125W F TC=0+=100 RESISTOR 10K 12 .125W F TC=0+=100 RESISTOR 1.96K 12 .125W F TC=0+=100 RESISTOR 162 12 .125W F TC=0+=100	0160G 03298 03298 03298 03298 03298	CH5605 C4-1/R-T0+1003-F C4-1/8-T0+1002-F C4-1/8-T0-1901-F C4-1/8-T0-1901-F
A11R11 A11R12 A11R13 A11R14 A11R14 A11R15	0757-0405 0643-2705 0643-2705 0643-1535 0663-1535	3	RESISTOR 162 12 .125W F TC=0+-100 RESISTOR 27 51 .25W FC TC=-000/+500 RESISTOR 27 51 .25W FC TC=-000/+500 RESISTOR 15K 51 .25W FC TC=-000/+600 RESISTOR 15K 51 .25W FC TC=-000/+600	03298 01606 01606 01606	C4-1/8-T0-162R+F C4-1/8-T0-162R+F C82705 C82705 C82705 C81535
A[1R]6+	0698=3259 0757-0442	1	RESISTOR 7.87K IX .125W F TC=0+-100 +Factory Selected Part	0160G 0329B	C81535 C4-1/8-T0+7871+F
A11R18 A11R19	0698=4420 0698=4442	1 2	RESISTOR 10% 1% .125W F TC#0+-100 RESISTOR 226 1% .125W F TC#0+-100 RESISTOR 4.42% 1% .125W F TC#0+-100	03298 03298 03298	C4-1/8-T0-1002=F C4-1/8-T0-226R=F C4-1/8-T0-4421=F
411R20 411R21 411R22 411R23 411R23 411R24	0698-3155 0757-0278 0683-3335 0757-0317 0683-3335	1	RESISTOR 4,64k 1% .125W F TC=0+-100 RESISTOR 1.78K 1% .125W F TC=0+-100 PESISTOR 33K 5% .25W FC TC=-400/+600 RESISTOR 1.33K 1% .125W FC TC=0+-100 RESISTOR 33K 5% .25W FC TC=-400/+600	03298 03298 01606 03298 01606	C4-1/8-70-4641=F C4-1/8-70-1781=F C8335 C4-1/8-70-1331=F C8335
411R25 411R26 411R27 411R28 411R28 411R29	0698-0498 0698-1427 0698-3155 0698-0498 0698-1427	2 2	RESISTOR 53,6K 1% ,125W F TC#0+-100 RESISTOR 400K .5% .25W RESISTOR 4.64K 1% ,125W F TC#0+-100 RESISTOR 53,6K 1% ,125W F TC#0+-100 RESISTOR 400K .5% .25W	03298 28480 03298 03298 28480	C4-1/8-T0-5362-F 0098-1427 C4-1/8-T0-4641=F C4-1/8-T0-5362-F 0098-1427
A11R30 A11R31 A11R32 A11R33 A11R33	0698-4442 0683-8225 0683-8225 0683-8335 0683-3335 0757-0443	1 13 1	HESISTOR 4.42K 1X .125W F TC#0+=100 RESISTOP 8.2K 5X .25W FC TC#=400/+700 HESISTOP 4.7K 5X .25W FC TC#=400/+700 RESISTOR 33K 5X .25W FC TC#=400/+800 RESISTOR 11K 1X .125W F TC#0+=100	03298 01606 01606 01606 03298	C4-1/8-T0-4421+F C88225 C84725 C8335 C4-1/8-T0-1102=F
A11R35 A11R36 A11R37 A11R38 A11R38 A11R39	0757-0416 0698-3154 0683-5625 0683-3335 0683-7525	3 1 11 1	RESISTOR 511 1% .125W F TC=0+-100 PESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 5.6K 5% .25W FC TC=-400/+700 RESISTOR 33K 5% .25W FC TC=-400/+700 RESISTOP 7.5K 5% .25W FC TC=-400/+700	03298 03298 0160G 0160G 0160G	C4-1/8-T0-511R+F C4-1/8-T0-4221-F C85625 C83335 C87525
A11Ra0 A11Ra1 A11Ra2 A11Ra3 A11Ra3	0643-3335 0683-3335 0683-3335 0683-3335 0683-3335 0757-0486	a	RESISTOR 33K 5% .25M FC TC==400/+800 RESISTOR 35K 5% .25M FC TC==400/+800 RESISTOR 750K 1% .125M FC TC==00	0160G 0160G 0160G 0160G 0150C	C83335 C83335 C83335 C83335 C83335
Atira5 Alira6 Alira7 Alira8 Alira9	0757-0486 0757-0486 0757-0486 0683-3335 0683-3335		RESISTOP 750K 1% .125W F TC=0+=100 RESISTOR 750K 1% .125W F TC=0+=100 RESISTOR 750K 1% .125W F TC=0+=100 RESISTOR 35K 5% .25W FC TC==400/+600 RESISTOR 35K 5% .25W FC TC==400/+600	05520 05520 05520 05520 0160G 0160G	CMF =55=1 CMF =55=1 CMF =55=1 CMF =55=1 CB 3335 CB 3335
411850 411851 411852	0683-3335 0683-3335 0683-3335		RESISTOR 33K 5% 25W FC TC==000/+800 RESISTOR 33K 5% 25W FC TC==000/+800 RESISTOR 33K 5% 25W FC TC==000/+800	0160G 0160G 0160G	C83335 C83335 C83335

Table 6-3.	Replaceable	Parts	(Cont'd).
------------	-------------	-------	-----------

A1	Designation	Number	Qty	Description	Code	Mfr Part Number
1 41	171	9100-0866 9100-0866	2	TRANSFORMER, PULSE TOK412N4 Transformer, pulse tok412N4	28480 28480	9100-0866 9100-0866
A1 A1	101 102 103	1826-0319 1826-0319 1826-0326	5	1C OP AMP IC OP AMP IC OP AMP	0340F 0340F 07933	LF 356H LF 356H RC 4558DN
A1.	2	04262-66512 04262-26512	1	RANGE RESISTOR BOARD ASSEMBLY PC ROARD, BLANK	28480 28480	04262-66512 04262-26512
	2C1 2C2+	0160-0159 0140-0190	1	CAPACITOR-FXD 6800PF +=10X 200VDC POLYE CAPACITOR-FXD 39PF +=5X 300VDC *FACTORY SELECTED PART	0420J 72136	DM15E390J0300WV1CR
A1	203+	0121+0059	S	CAPACITOR-V TRMR-CER 2-8PF 350V PC-MTG +FACTORY SELECTED PART	73899	OV11P484
A1 A1	2C4 2C5 2C6 2C7 2C8	0180-1051 0180-1051 0150-0050 0150-0050 0150-0050	6	CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR-FXD 1000PF +80-201 1KVDC CEH CAPACITOR-FXD 1000PF +80-201 1KVDC CEH CAPACITUR-FXD 1000PF +80-201 1KVDC CER	28480 28480 28480 28480 28480 28480	0180-1051 0180-1051 0150-0050 0150-0050 0150-0050
A1 41 41	2C9 2C10 2C11 2C12 2C12 2C13	0150-0050 0150-0050 0121-0105 0180-0269 0160-2150	1 1 1	CAPACITOR-FXD 1000PF +80-20% 1KVDC CER CAPACITOR-FXD 1000PF +80-20% 1KVDC CER CAPACITOR-V TRMH-CER 9-35PF 200V PC-MTG CAPACITOR-FXD UTF+75-10% 150VDC AL CAPACITOR-FXD 33PF +=5% 300VDC	28480 28480 73899 0420J 28480	0150-0050 0150-0050 0411PH35D 300105G150842 0160-2150
A1 A1 A1	2C14 2C15 2C16 2C17 2C18	0160=2199 0180=1051 0180=1051 0180=1051 0180=1051	3	CAPACITOR-FXD 30PF +-5% 300VOC CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M	28480 28480 28480 28480 28480 28480	0160-2199 0180-1051 0180-1051 0180-1051 0180-1051
41	2019	0180-1051 0180-1051		CAPACITOR, FXD 100 UF 16V M Capacitor, FXD 100 UF 16V M	28480 28480	0180-1051 0180-1051
A1 A1 A1	2CR1 2CR2 2CR3 2CR4 2CR4	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	60	DIDDE-SWITCHING 30V SOMA 2NS DO-35 DIDDE-SHITCHING 30V SOMA 2NS DO-35 DIDDE-SHITCHING 30V SOMA 2NS DO-35 DIDDE-SHITCHING 30V SOMA 2NS DO-35 DIDDE-SHITCHING 30V SOMA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A1 A1 A1	2CR6 2CR7 2CR8 2CR9 2CR9 2CR10	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A1 A1 A1	2CP11 2CP12 2CP13 2CP14 2CP14 2CP15	1901-0040 1901-0040 1902-3149 1901-0040 1901-0040		DIODE-SWITCHING 30Y 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODF-ZNR 9,09Y 52 DO-7 PDB,4W TC4+,057% DIODE-SWITCHING 30Y 50MA 2NS DO-35 DIODE-SWITCHING 30Y 50MA 2NS DO-35	28480 28480 02236 28480 28480	1901-0040 1901-0040 F27256 1901-0040 1901-0040
A1 A1 A1	2CR16 2CR17 2CR18 2CR19 2CR20	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DD-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 DIODE-SAIICHING 30V 50MA 2NS DD-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
	241	0490-0237	1	RELAY, REED 2A	28480 28480	0490-0237 1855-0091
41 41 41	201 202 203 294 205	1855-0091 1855-0091 1855-0091 1855-0117 1855-0091	1	TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN SI THANSISTOR J=FET N=CHAN D=MODE SI	28480 28480 28480 28480 28480	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091
A1 A1 A1	205 207 208 209 2010	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091 1855-0091		TRANSISTOR J=FET N=CMAN D=MODE SI TRANSISTOR J=FET N=CMAN D=MODE SI TRANSISTOR J=FET N=CMAN D=MODE SI TRANSISTOR J=FET N=CMAN D=MODE SI TRANSISTOR J=FET N=CMAN D=MODE SI	28480 28480 28480 28480 28480 28480	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091
A1 A1	2011 2012 2013 2014 2014	1455-0091 1854-0071 1854-0071 1855-0081 1854-0013	6 1	TRANSISTOR J=FET N=CHAN D=MODE SI TPANSISTOR NPN SI PD=300MW FT=200MMZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR J=FET 2M5245 N=CHAN D=MODE SI TRANSISTOR NPN 2M221AA SI TU=5 PD=800MW	28480 28480 28480 0169H 02036	1855-0091 1854-0071 1854-0071 285245 2822184
41 41 41	12016 12017 12018 12019 12020	1453-0012 1453-0020 1853-0020 1853-0020 1854-0071	5	TRANSISTOR PNP 2N2904A SI TO-59 PD#600MM TRANSISTOR PNP SI PD#300MM FT#150MMZ TRANSISTOR PNP SI PD#300MM FT#150MMZ TRANSISTOR PNP SI PD#300MM FT#150MMZ TRANSISTOR NPN SI PD#300MM FT#200MMZ	0169H 28480 28480 28480 28480 28480	2N2904 1853-0020 1853-0020 1853-0020 1854-0071
41	12021 12022 12023	1853-0020 1853-0020 1853-0020		TRANSISTOR PNP 31 PD#300MW FT#150MH2 Transistor PNP 31 PD#300MW FT#150MH2 Thansistor PNP 31 PD#300Mm FT#150MH2	28480 28480 28480	1853-0020 1853-0020 1853-0020

Section VI Table 6-3

Reference	HP Part	Qty	Description	Mfr	
Designation	Number			Code	Mfr Part Number
A12R1 A12R2	2100-2514 063-1055	.1	RESISTOR-TRMR ZOK 10% C SIDE-ADJ 1-TRN	0365A	E750#203
ATZR3	0683-1055	35	RESISTOR 14 5% .25% FC TC=+800/+900	01606	C81055
A12R4	8955-8690	1	RESISTOR IN 51 .25W FC TC=+800/+900 RESISTOR 10 .05% .33W	01606	CB1055
A12R5	0698+2294	1	RESISTOR 100 .1 .05%	28480 28480	0698-2298 0698-2294
412R6 A12R7	0698-2296 0698-2214	1	RESISTOR 1010.1 .05%	28480	0695-8600
AIZRB	0698-5408		RESISTORIFXD 10.0K OHM 0.05% 1/8W MF	28480	0696-2214
A12R9	0698-2225		REBISTOR 1.111K .251 .125W F TCE0+-100 REBISTORIFXD 90.0K DHM 0.051 1/8W NF	03888	PHE55-1/8-T0-1111R-C
A12R10	0698+5329	1	RESISTOR 10K .5% .125W F TC=0+=100	28480	0698+2225 PME55+1/8+T0+1002+0
A12R11 A12R12	0683-3335 0683-4705	6	RESISTOR 35K 5% .25# FC TC#-400/+800	01606	C83335
A12R13	0683-4705	1 °	RESISTOR 47 5% .25W FC TC==400/+500	0160G	C84705
A12R14	0683+1055		RESISTOR 47 5% .25W FC TC=+400/+500 RESISTOR 1M 5% .25W FC TC=+8007+900	0160G	C84705
A12R15	0683+1055		RESISTOR 1M 5% .25W FC TC=-800/+900	01606	C81055 C81055
A12R16	0683-1055		RESISTOR 1M 5% .25W FC TC==800/+900	01606	CB1055
A12R17 A12R18	0643-1055 0683-1055		RESISTOR IN 5% .25W FC TC#-BOO/+900	01606	CR1055
A12819	0643-1055		RESISTOR 1M St .25W FC TC=-800/+900 RESISTOR 1M St .25W FC TC=-800/+900	01606	C81055
A12R20	0683-1055		RESISTOR 1M 51 .25W FC TC#-800/+900	01606	C81055 C81055
A12821 A12822	0683-1055	1	RESISTOR 1M 5% .25W FC TC=+800/+900	01606	CB1055
A12R23	0683-1055 0683-3335	1	RESISTOR 1M 5% .25% FC TC=+800/+900	0160G	C81055
A12R24	0643+3335		RESISTOR 33K 5% .25W FC TC#-400/+800 RESISTOR 33K 5% .25W FC TC#-400/+800	01606	C83335
A12825	0683-3335		RESISTOR 33K 5% .25W FC TC==400/+800	01606	C83335 C83335
A12R26 A12R27	0683-3335	1	REBISTOR 35K 5% .25W FC TC==400/+800	01606	CB3335
A12R28	0683-3335 0683-1035		RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	01606	C83335
A12829	0683-5655	15 5	RESISTOR 10K 5% 25W FC TC#-400/+700 RESISTOR 5.6M 5% 25W FC TC#-400/+1100	0160G	C81035
A12R30	0683+1035		RESISTOR 10K 5% 25% FC TC=400/+700	0160G 0160G	CB5655 CB1035
A12R31 A12R32	0683-3325	4	RESISTOR 3.3K 5% .25W FC TC=-400/+700	01605	C83325
A12R33	0663-1065	1	RESISTUR 10M 51 25W FC TC#=900/+1100	01606	681065
412834	0757-0394	2	RESISTOR 1M 51 .25W FC TC=+800/+900 RESISTOR 51.1 12 .125W F TC=0+=100	0160G	C81055
412R35	06A3-1035		RESISTOR 10% 5% 25% FC TC==000/+700	03298 0160G	C4+1/8+T0+51H1+F C81035
412R36 412R37	0683-0275 0683-4705	2	REBISTOR 2.7 5% .25W FC TC==400/+500 RESISTOR 47 5% .25W FC TC==400/+500	01606	C827G5
412838	0683-4705		RESISTOR 47 52 .25W FC TC==400/+500 RESISTOR 47 52 .25W FC TC==400/+500	01606	CB4705
A12839	0757-0394	1 1	RESISTOR 51.1 12 .125W F TC=0+-100	0160G 03298	C84705 C4+1/8+T0+51R1=F
AJZR40	0643-1035		RESISTOR 10K 5% .25W FC TC=+400/+700	01606	CB1035
412R41 412R42	0683-0275 0757-1090	2	RESISTOR 2.7 5% .25W FC TC#=400/+500	0160G	C82765
412R43	0757-1090		RESISTOR 261 1% .5W F TC#0+=100 RESISTOR 261 1% .5W F TC#0+=100	05005	MF7C1/2=T0=261R=F
A12R44	0683-3335	1 1	RESISTOR 33K 51 .25W FC TC=+400/+800	0299E 0160G	MF7C1/2=T0=261R+F C83335
A12R45	0683-3335	1	RESISTOR 33K 5% .25W FC TC=+400/+800	01606	C83335
A12R46 A12R47	0683+3335 0683-3335		RESISTOR 33K 51 .25W FC TC=+000/+800	01606	C83335
412R48	0683-3335	1 1	RESISTOR 33% 5% .25W FC TC==400/+800 RESISTOR 33% 5% .25W FC TC==400/+800	01606	C83335
A12R49 A12R50	0683-3335	1 1	PESISIUR 338 SX 238 FC 1C8-000/+800	01606	CB3335 CH3335
	0683+3335		RESISTUR 33K 51 .25W FC TC#+400/+600	01606	CB3335
412U1 412U2	1826=0326 1826=0089	1	ЧМА ЧО ЭТ 10 9535 ОР АМР	07933	804558DN
		'	AV CICJ UF BMP	03791	HA2=2525=5
413	04262-66513	1	PROCESS AMPLIFIER BOARD ASSEMBLY	28480	04262+66513
	04262-26513	1 1	PC BOARD, BLANK	28480	04262=26513
413C1+	0121-0059		CAPACITOR-V TRMR-CER 2-8PF 350V PC-MTG	73899	DV11PR84
A13C2 A13C3	0160-1586	3	+FACTORY SELECTED PART CIFXD MY 0.1 UF 10X 100VDCW	28480	0160-1586
41304	0160-2254 0160-1586	1	CAPACITOR=FX0 7.5PF +=.25PF 500VDC C1FX0 MY 0.1 UF 10X 100VDCM	28480 28480	0160-2254
41305			NOT ASSIGNED	50400	0160-1586
413C6 413C7	0180-1051		NOT ASSIGNED		
41308	0180-1051 0180-1051		CAPACITOR, FXD 100 UF 16V M	28480	0180-1051
41309	0100-2055	A	CAPACITOR, FXD 100 UF 16V M CAPACITOR+FXD .01UF +80+20X 100VDC CEH	28480 28480	0180-1051 0160-2055
413010	0160-2055		CAPACITOR-FXD .01UF +80-20X 100VDC CFR	28480	
413C11 413C12	0180-1051		CAMACITOR, FXD 100 UF 16V M	28480	0160-2055 0180-1051
A13C13	0140+1051 0160+2055		CAPACITOR, FXD 100 UF 16V M	28480	0180+1051
413010	0160-2055		CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER	28480 28480	0160-2055
413015	0150-0050				0100-2055
413016	0140-0200		CAPACITOP+FXD 1000PF +80+20% 1KVDC CER CAPACITOR+FXD 390PF ++5% 300VDC MICA0+70	28480	0150-0050
A13C17 A13C18	0160-2055		CAPACITOR-FXD .01UF +80-20% 100VDC CFR	72136 28480	DM15F391J0300WV1CR 0160=2055
413019	0180-1051		CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR, FXD 100 UF 16V M	28480	0160-2055
1	-			28480	0180-1051
1					

Table 6-3. Replaceable Parts (Cont'd).

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 1 3C 20 A 1 3C 21 A 1 3C 22	0180=1091 0160=2055 0160=2055		CAPACITOR, FXD 100 UF 16V M Capacitor=FXD .01UF +80=20X 100VDC CER Capacitor=FXD .01UF +80=20X 100VDC CER	28480 28480 28480	0180-1051 0160-2055 0160-2055
A13CP1 A13CP2 A13CP3 A13CP4 A13CP5	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040	2	DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040
A13CP6 A13CP7 A13CP8 A13CP9 A13CP9 A13CP10	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 26480 26480 26480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A13CR11 A13CR12 A13CR13 A13CR13 A13CR14 A13CR15	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1902-0041		010DE-SWITCHING 30V 50MA 2NS DO-35 010DE-SWITCHING 30V 50MA 2NS DO-35 D10DE-SWITCHING 30V 50MA 2NS DO-35 D10DE-SWITCHING 30V 50MA 2NS DO-35 D10DE-2NR 5,11V 53 D0-7 PD#,4W TC#=,009X	28480 28480 28480 28480 28480 0203G	1901-0040 1901-0040 1901-0040 1901-0040 52 10939-98
413CP16 A13CP17 A13CP18 A13CP19 A13CP19 A13CP19	1902-0041 1902-0049 1901-0040 1901-0040 1902-3149	3	DIODE-ZNR 5.11V 51 DO-7 PD=.4W TC=0091 DIODE-ZNR 6.19V 51 DO-7 PD=.4W TC=+.0221 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 9.09V 51 DO-7 PD=.4W TC=+.0571	0203G 0223G 28480 28480 0223G	SZ 10939-98 FZ7240 1901-0040 1901-0040 FZ7256
A1 301 A1 302 A1 303 A1 304 A1 305	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091		TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI THANSISTOR J=FET N=CHAN D=MODE SI	28480 28480 28480 28480 28480 28480	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091
A 1 306 A 1 307 A 1 308 A 1 309 A 1 309	1855-0091 1853-0020 1853-0020 1853-0020 1853-0020		TRANSISTOR J=FET N=CMAN D=MODE SI TRANSISTOR PNP SI PD=300Mm FT=ISOMMZ TRANSISTOR PNP SI PD=300Mm FT=ISOMMZ TRANSISTOR PNP SI PD=300Mm FT=ISOMMZ TRANSISTOR PNP SI PD=300Mm FT=ISOMMZ	28480 28480 28480 28480 28480 28480	1855-0091 1853-0020 1853-0020 1853-0020 1853-0020
413011 413012 413013 413014 413015	1853-0020 1853-0020 1853-0020 1853-0020 1853-0020		THANSISTOR PAP SI PD#300MW FT#150MHZ THANSISTOR PAP SI PD#300MW FT#150MHZ TFANSISTOR PAP SI PD#300MW FT#150MHZ TRANSISTOR PAP SI PD#300M# FT#150MHZ TRANSISTOP PAP SI PD#300M# FT#150MHZ	28480 28480 28480 28480 28480 28480	1853-0020 1853-0020 1853-0020 1853-0020 1853-0020 1853-0020
A13016 A13017 A13018 A13019	1855-0062 1855-0062 1855-0062 1855-0062		TRANSISTOR J=FET N=CMAN D=MODE SI Transistor J=FET N=CMAN D=MODE SI Transistor J=FET N=CMAN D=MODE SI THANSISTOR J=FET N=CMAN D=MODE SI	28480 28480 28480 28480	1855-0062 1855-0062 1855-0062 1855-0062
413R1 413R2 413R3 413R4 413R5	2100-2516 2100-2516 0643-1035 0643-1035 0683-1055	4	PLSISTOR→TRMR 100K 10% C SIDE→ADJ 1→TRN RESISTOR→TRMR 100K 10% C SIDE→ADJ 1→TRN RESISTOR 10K 5% ,25% FC TC=→400/+700 RESISTOR 10K 5% ,25% FC TC=→400/+700 RESISTOR 1M 5% ,25% FC TC=→800/+900	73138 73138 0160G 0160G 0160G	62-231-1 62-231-1 C61035 C81035 CR1055
A 1 3R6 A 1 3R7 A 1 5R8 A 1 3R9 A 1 3R10	0698-2206 0698-2207 0643-1055 0698-2206 0698-2207	5	RESISTORIFXD 100 DHM 0.05% 1/8W MF RESISTORIFXD 900 DHM 0.05% 1/8W MF RESISTORIFXD 900 DHM 0.05% 1/8W MF PESISTORIFXD 100 UHM 0.05% 1/8W MF RESISTORIFXD 900 DHM 0.05% 1/8W MF	28480 28480 0160G 28480 28480	0698-2206 0698-2207 CH1055 0698-2206 0698-2206
A 1 3R 11 A 1 3R 12 A 1 3R 1 3 A 1 3R 1 4 A 1 3R 1 5	0683-1055 0698-2297 0698-2297 0698-2297 0698-3451	8	RESISTOR 1M 5% .25W FC TC=+H00/+900 RESISTOR 3.01K .05% RESISTOR 3.01K .05% RESISTOR 3.01K .05% RESISTOR 3.01K .05% RESISTOR 133K 1% .125W F TC=0++100	01605 28480 28480 28480 03298	CB1055 0698-2297 0698-2297 0698-2297 C4-1/8-T0+1333-F
413R16 413R17 413R18 413R19 413R19 413R20	0698-2297 0683-1055 0698-2297 0698-2297 0698-2297		RESISTOR 3.01K .05% RLSISTOR 1M 5% .25₩ FC TC≠+800/+900 RESISTOR 3.01K .05% RESISTOR 3.01K .05% RESISTOR 3.01K .05%	28480 0160G 28480 28480 28480	0698-2297 C81055 0698-2297 0698-2297 0698-2297
A 1 3R 2 1 A 1 3R 2 2 A 1 3R 2 2 A 1 3R 2 4 A 1 3R 2 5	0698-3451 0683-2745 0698-2297 0683-1035 0683-1035		RESISTOR 133K 1% .125W F IC=0+-100 RESISTOR 270K 5% .25W RESISTOR 3.01K .05% RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	03298 28480 0160G 0160G	Ca-1/8-T0+1 333-F 0698-2297 CB1035 CB1035 CB1035
AT3R26 AT2R27 AT3R28	0683-2745 0683-1005 0683-1005		RESISTOR 270K 5% .25W RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 PESISTOR 10 5% .25W FC TC=-400/+500 PESISTOR 1K 5% .25W FC TC=-400/+600	0160G 0160G 0160G	CB1005 CH1005 CB1025
A 1 3R29 A 1 3R30 A 1 3R31	0683-1025 0683-2235 0683-1005	52	PESISTOR 22K 51 ,25W FC TC==000/+800 PESISTOR 10 51 ,25W FC TC==000/+800 PESISTOR 10 51 ,25W FC TC==000/+500	01606	C#2235 CB1005

See introduction to this section for ordering information

6-10

Table 6-3.	Replaceable	Parts	(Cont'd).
	A	-	(00.00 0).

Reference	HP Part		T		T
Designation	Number	Qty	Description	Mfr Code	Mfr Part Number
A13832	0683-1005		RESISTOR 10 5% .25W FC TC==400/+500	0160G	CB1005
AI 3R33 A1 3R34	0683-1055 0683-1055	1	RESISTOR IN 5% .25W FC TC==800/+900	01605	CB1055
A13R35	0083-1055		RESISTOR 14 51 .25% FC TC==800/+900 RESISTOR 14 51 .25% FC TC==800/+900	0160G 0160G	CB1055
A13R30 A13R37	06#3=1055 0683=1055		RESISTOR IM 5% .25W FC TC=+800/+900	01606	C81055
AISRSA	0683-1055		RESISTOR 1M 51 .25W FC TC=-800/+900 RESISTOR 1M 51 .25W FC TC=-800/+900	01606	C81055
A13R39 A13R40	0683-1055 0683-1055		RESISTOR 1M 51 .25W FC TC==800/+900 RESISTOR 1M 51 .25W FC TC==800/+900	0160G 0160G 0160G	CH1055
A13R41 A13R42	0683-1025 0683-1035		RESISTON 1K ST 25% FC TCR-40044400	01606	CB1025
A13R43	0683-1235	a	RESISTOR 10K 5% .25W FC TC==400/+700 RESISTOR 12K 5% .25W FC TC==400/+800	01606	C#1035
A13R44 A13R49	0683+1235 0683+1235		RESISTOR 124 51 .25W FC TC=400/+800 RESISTOR 124 51 .25W FC TC=400/+800	0160G 0160G 0160G	CB1235 CB1235
413RU6 413RU7	0083-1235		RESISTOR 12K SX .25W FC TC	01605	C81532
415848	0683-1055 0683-2235		RESISTOR 1H 5% 25% FC TC==800/+900 RESISTOR 22K 5% 25% FC TC==400/+800	01606	CR1055
A13R49 A13R50	0683-2235		KESISTUR 22K SX .25W FC TCH+400/+A0D	01606	CH2235
413R51	0683-2235		RESISTOR 22K 5% .25W FC TC==400/+800	01006	C85532
A13852	0643-2235 0643-2235		RESISTOR 22K 5% .25W FC TC#=400/+800 RESISTOR 22K 5% .25W FC TC#=400/+800	01606	682235
A13853 A13854	0683-2235	1	I REGIGIUR 228 31 .256 FF 108-0007.888	01606	CB2235 CB2235
A1 3855	0083-2235		RESISTOR 22K 5% .25W FC TC==400/+800 RESISTOH 22K 5% .25W FC TC==400/+800	0160G 0160G	C82235 C82235
A13R56 A13R57	06A3-2235 06A3-2235		RESISTOR 22K St 25W FC TC==400/+800	01606	C82235
413858	0683-2235		RESISTOR 22K 5% .25W FC TC==400/+800 RESISTOR 22K 5% .25W FC TC==400/+800	01606	C82235
A13859 A13860	0683-2235		RESISTUR 226 SX .25W FF 1F8=400/+440	01606	CB2235 CB2235
A13R61	_		RESISTOR 224 5% .25% FC TC=-400/+800	0160G	CH5532
A13R62	0683-2235		RESISTOR 22K 5% .25W FC TC==400/+800 HESISTOR 22K 5% .25W FC TC==400/+800	0160G	662235
A13R63 A13R64	0683-2235			0160G 0160G	C82235 C82235
413R65	0683-2235		RESISTOR 22K 51 .25W FC TC==400/+800 RESISTOR 22K 51 .25W FC TC==400/+800	0160G 0160G	CH2235 CH2235
413R66 A13R67	2100-2516		RESISTOR-TRMR LOOK 10% C SIDE-ADJ 1-TRN	73138	1-125-20
413R68	2100-2516 0643-1025		RESISTOR + FRMR 100K 10% C SIDE ADJ 1-TRN RESISTOR 1K 5% 25% EF 15%-00044400	75138	02+231+1
A13R69 A13R70	0683-1045 0683-1025	3	RESISTOR 100% 51 25W FC TC#=400/+800 RESISTOR 1K 51 25W FC TC#=400/+600	0160G 0160G	C81025 C81045
A13R71	0683-3935	2	RESISTOR 39N 52 .25H FC TC==400/+800	0160G	C81025
A13R72 A13R73	0683-1035 0683-1045		"ESISTOR 10K 3% .23W FC TC==400/+700	0160G 0160G	C83935 C81035
A13R74	0683-1035		RESISTOR 10K 5% 25W FC TCR-400/+800	0160G	CB1045
413R75 A13R76	0683-1025		RESISTOR IN 51 .25W FC TC=-400/+600	01606	C81035 C81025
A13R77	0683-1025 0683-1025		RESISTOR 1K 5% .25% FC TC==400/+600 RESISTOR 1K 5% .25% FC TC==400/+600	0160G	C81025
A13R78 A13R79	0683-2235 0683-4725		RESISTOR 22% St .25W FC TC = 400/ARAA	01606	CB1025 CH2235
A13R80	0683-1025		RESISTOR 4,7K 51 .25W FC TC=+000/+700 RESISTOR 1K 51 .25W FC TC=+400/+600	0160G 0160G	C 84725 C 81025
413RA1 413R82	0683-1055 0683-1825	5	RESISTOR IM St .25W FC TC##HOO/+900	016UG	CB1055
A13R83	0683+2235	`	RESISTOR 1.8K 51 .25W FC 100-400/+700 RESISTOR 22K 51 .25W FC 100-400/+700	0160G 0160G	C81852
413R85	0683-1825 0683-2235		"TOIDIUN 1.6% 5% .25% FC TC==400/+700	0160G 0160G	C82235 C81825
413R86	06A3-1055		RESISTOR 224 5% ,25W FC TC#-400/+800 RESISTOR 1M 5% ,25W FC TC#+800/+900	01606	C82235
413R87 A13R88	0683+1025		RESISTOR 18 52 .25# FC TC==400/+600	0160G 0160G	C81055 C81025
A13R89	0683-1015 0683-1015	7	RESISTOR 100 51 .25W FC TC==400/+500 RESISTOR 100 51 .25W FC TC==400/+500	0160G 0160G	C81015 C81015
413U1 413U2	1826-0319		IC OP AMP	0340F	LF356H
A1303	1826=0319 1826=0217	2	IC ОР АМР IC ОР АМР	0340F	LF3SoH
4131ja 413US	1826+0217 1826+0326	- 1	IC OP AMP	07933 07933	#C4558T RC4558T
41306	1		IC OP AMP	07933	RC455ADN
41307	1450-0350	2	IC OP AMP IC 710 COMPARATOR	07953	HC 45580N
413UA	1820-0125	i	IC 711 COMPARATOR	05530 05530	710HC 711HC
414	04262-66514	1	PHASE DETECTOR & INTEGRATOR BUARD ASSY	28480	04202=66514
41901	04262-26514	1	PC BOARD, BLANK	28480	04262=26514
41462	0160-1603 0160-1674	5	CIFXD MY 1 UF 10% 100VDCW	28480	0160-1603
414C3 414Ca	0160-1603 0150-0075		CAPACITOR . 33 UF 5% 200VDCW CIFXD MY 1 UF 10% 100VDCW	28480 28480	0160-1674 0160-1603
41405+	0160-2307	1	CAPACITOR-FXD 4700PF +100-01 500VDC CER CAPACITOR-FXD 47PF +-51 300VDC	28480	0150-0075
			+FACTORY SELECTED PART	28480	0160-2307

See introduction to this section for ordering information

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A14C6 A14C7 A14C8 A14C8 A14C9 A14C10	0160-1271 0160-1587 0160-1558 0160-1558 0160-1558	2 1 2	CIFXD MY 0.01 UF 5% SGVDCW CAPACITOR, FXD POLY 0.33 UF 5% 2000VDC CIFXD MY 0.007 UF 5% 100VDCW CIFXD MY 0.01 UF 5% 100VDCW CIFXD MY 0.1 UF 10% 100VDCW	28480 28480 28480 28480 28480 28480	0160-1271 0160-1587 0160-1558 0160-1558 0160-1556
A14C11 A14C12 A14C13 A14C13 A14C15	0160-1271 0160-1664 0160-0127 0180-1052 0160-3451	2 85	C:FXO MY 0.01 UF 5% 50VDCW Capacitor 3300 PF 50V Capacitor=FXD 1UF +=20% 25VDC CER Capacitor=220 UF 6.3V M Capacitor=FXD .01UF +80=20% 100VDC CEM	28480 28480 28480 28480 28480 28480	0160-1271 0180-1864 0180-0127 0180-1052 0180-3451
A14C16 A14C17 A14C18 A14C19 A14C20	0160=3451 0160=3451 0160=3451		CAPACITOR-FXD .01UF +80-20% 100VDC CEH CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CEH NOT ASSIGNED NOT ASSIGNED	28480 28480 28480	0160-3451 0160-3451 0160-3451
A14C21 A14C22 A14C23 A14C24 A14C24 A14C24	0180#1051 0180=1051 0180=1052 0160=0127		CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR 220 UF 6.3V M CAPACITOR-FXD 1UF +-20X 25VDC CER NOT ASSIGNED	28480 28480 28480 28480 28480	0180-1051 0180-1051 0180-1052 0160-0127
A14C25 A14C26 A14C27 A14C28 A14C28 A14C29			NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED		
4 1 4 C 3 0 4 1 4 C 3 1			NOT ASSIGNED		
A14CR1 A14CR3 A14CR4 A14CR5 A14CR5	1901-0040 1901-0040 1902-3059 1902-0049 1901-0040	1	DIODE-8WITCHING 30V 50MA 2NS DD-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 OIODE-2NR 3,83V 5% DD-7 PD8,4W TC#-,051% DIODE-2NR 6,19V 5% DD-7 PD8,4W TC#+,022% DIODE-8WITCHING 30V 50MA 2NS DD-35	28480 28480 0203G 0225G 28480	1901-0040 1901-0040 32' 10939-62 F/7240 1901-0040
414CR7 414CR8 414CR9 414CR10 414CR11	1901-0040 1902-3149 1902-3074 1901-0040 1901-0040	1	DIODE-SWITCHING 30V 50MA 2NS DU-35 DIODE-ZNR 9.09V 5% DU-7 PD#.4W TC#+.057% DIODE-ZNR 4.32V 2% D0+7 PD#.4W TC#+.055% DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35	28480 0223G 0203G 28480 28480	1901-0040 F27250 52 10939-78 1901-0040 1901-0040
A14CP12 A14CR13 A14CR14 A14CR15 A14CR15 A14CR16	1901-0040 1901-0040 1902-0048 1901-0040 1901-0040	2	DIGDE-SWITCHING 30V 50MA 2NS 00-35 DIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-2NR 6,81V 5% DO-7 PD#,4W TC=+,043% DIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 0223G 28480 28480	1901-0040 1901-0040 F 27244 1901-0040 1901-0040
Δ14CH17 Δ14CH18 Δ14CH19 Δ14CH20 Δ14CH20 Δ14CH21	1902-0049 1901-0040 1901-0040 1902-3149 1902-3150	1	DIODE_ZNR 6,19V 5X DO_7 PD=,4W TC=+,0223 DIODE_SNITCHING 30V 50MA 2N3 DO=35 DIODE_SWITCHING 30V 50MA 2N3 DO=35 DIODE_ZNR 9,09V 5X DO=7 PD=,4W TC=+,057X DIODE_ZNR 9,09V 2X DO=7 PD=,4W TC=+,057X	0223G 28480 28480 0223G 0223G	FZ7240 1901-0040 1901-0040 FZ7256 FZ7456
A14CR22 A14CR23	1902-3149	1	DIDDE-ZNR 9.09V 5% DD-7 PD#.4H TC#+.057% DIDDE-ZNR 6.98V 2% DD-7 PD#.4H TC#+.045%	05530 05520	f 27256 f 27445
A1401 A1402 A1403 A1404 A1405	1855-0062 1855-0091 1855-0091 1855-0119 1855-0081	1	TRANSISTOR J-FET N-CMAN D-MODE SI TRANSISTOR J-FET N-CMAN D-MODE SI TRANSISTOR J-FET N-CMAN D-MODE SI TRANSISTOR J-FET N-CHAN SI TRANSISTOR J-FET 2N5245 N-CHAN D-MODE SI	28480 28480 28480 28480 28480 0169m	1855-0062 1855-0091 1855-0091 1855-0119 285245
A1496 A1407 A1408 A1409 A1409 A1409	1853+0020 1854-0023 1854+0071 1855-0091 1853+0020	1	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI TO=18 PD=360MW TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480 28480 28480 28480 28480 28480	1853-0020 1854-0023 1854-0071 1855-0091 1853-0020
A14011 A14012 A14013 A14014 A14015	1854+0071 1853-0020 1854+0071 1853+0020 1853-0020		THANSISTOR NPN SI PD=300MM FT=200MHZ TRANSISTOR PNP SI PD=300MM FT=150MHZ TRANSISTOR NPN SI PD=300MM FT=200MHZ TRANSISTOR PNP SI PD=300MM FT=150MHZ TRANSISTOR PNP SI PD=300MM FT=150MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1853-0020 1854-0071 1853-0020 1853-0020
A14016 A14017 A14018 A14019 A14020	1855-0062 1855-0062 1855-0094 *1855-0081 *1855-0081		THANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MUDE SI TRANSISTOR J-FET 2N5205 N-CHAN D-MODE SI TRANSISTOR J-FET 2N5205 N-CHAN D-MODE SI	28480 28480 28480 0169H 0169H	1855-0062 1855-0062 1855-0091 285245 285245
A 1 402 1 A 1 402 2 A 1 402 3 A 1 402 3 A 1 402 4 A 1 402 5	1853-0034 -1855-0081 -1855-0081 1853-0034 1853-0020	5	TKANSISTOR PNP SI TO-18 PD=300MH TRANSISTOR J=FET 2N5245 N=CMAN D=MODE SI TRANSISTOR J=FET 2N5245 N=CMAN D=MODE SI TRANSISTOR PNP SI TO=18 PD±360MH TKANSISTOR PNP SI PD=300MH FT±150MH2	28480 01694 01694 28480 28480	1853-0034 2N5245 2N5245 1853-0034 1853-0020

1

Section VI Table 6-3

Table 6-3. Replaceable Parts (Cont'd).

Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A14926	1853-0020		TRANSISTOR FNP SI PD#300MW FT#150MHZ	28480	1853-0020
414R1	2100-2522	2	RESISTOR-THMR TOK TOX C SIDE-ADJ 1-TRN	03654	E750×103
A14R2 A14R3	0683-1525 0683-1055	1	RESISTOR 1.5K 52 .25W FC 1C==400/+700	0160G	CB1525
A14R4	0683-4725		RESISTOR 1M 5% 25% FC TC==800/+900 RESISTOR 4.7K 5% 25% FC TC==400/+700	01606	CB1055
414R5	0757-1094	1	RESISTOR 1.47K 1% .125W F TC#0+=100	89550	C84725 C4-1/8-T0-1471-F
A14R6	0757-0290	1	#ESISTOR 0,19K 1% .125W F TC=0++100	39950	
A14R7	0757+0349	i	RESISTOR 22.6K 1% .125W F fC=0++100	03298	MF4C1/8=T0=6191=F C4=1/8=T0=2262=F
414R8 414R9	0683+1055 0643+1055		RESISTOR 1M 5% .25W FC TC#+800/+900	01606	C81055
414R10	0643-1055		RESISTOR 1M 5% .25% FC TC==800/+900 RESISTOR 1M 5% .25% FC TC==800/+900	0160G 0160G	C81055
A14R11	0683-1535				CB1055
A14R12	0698-3157	2	RESISTOR 15% 5% 25% FC TC#+400/+800 RESISTOR 19.6% 1% 125% F TC#0.+=100	0160G	C81535
A14R13	0757-0465		RESISTON 100K 12 .125W F TC=0+=100	03298	C4=1/8=T0=1962=F C4=1/8=T0=1005=F
414R10 414R15	2100-2522	1 /	NESISIUR 5.6M 5% .25W FC TC==900/+1100	01606	C85655
			RESISTOR-TAME LOK LOX C SIDE-ADJ 1-TEN	03654	ETSOX103
A14R16 A14R17	0683-1045		RESISTOR 100K 5% .25W FC TC==400/+800	01606	C81045
A14R18	0683-2225 0698-3161	3	RESISTOR 2.2K 5% 25W FC TC=400/+700 RESISTOR 38,3K 1% 125W F TC=00/+700	01606	C82258
A14R19	0683-4745	i	RESISTON 470K 5% .25W FC 1C#=800/+900	03298	C4-1/8-T0-3832-F C84745
A14R20	0757+0416		RESISTOR 511 12 .125# F TC=0+=100	0329B	C4-1/8-T0+511R-F
A14R21	0757-0416		HESISTOR 511 1% .125W F TC=0+=100	03298	C4-1/8-T0-511R-F
A14R22 A14R23	0698-0085	1	RESISTOR 2.61K 1X .125W F TC#0++100	0329H	C4-1/8-T0-2611-F
A14R24	0683-1055 0683-3335		RESISTOR 14 5% ,25% FC TC#=800/+900 Resistor 33% 5% ,25% FC TC#=400/+800	0160G	CA1055
414R25	0683-2745	1	RESISTOR 270K 5% 25% FC TC#+600/+800	0160G 0160G	CB3335 C62745
414826	0683-3335			{	
414R27	0683-3355		RESISTOR 33K 5% 25W FC TC#+400/+800 RESISTOR 33K 5% 25W FC TC#+400/+800	01606	CB3335 CB3335
A14828 A14829	0683+3335		RESISTOR 33K 5% ,25W FC TC#=400/+A00	01606	C83335
A14R30	0698-3439 0698-3226	1	RESISTOR 178 12 .125W F TC=0+-100 RESISTOR 0.49K 12 .125W F TC=0+-100	80550	C4-1/8-T0=178R+F
		<u> </u>		89520	C4=1/8=T0=6491=F
A14831 A14832	0698-3226 0693-1025		RESISTOR 0,49K 11,125W F TC#0+=100	03298	C4-1/8-T0+6491+F
A14R33	0698-4505	1	RESISTOR 1K 5% 25% FC TC==400/+600 RESISTOR 71.5K 1% 125% F TC=040+-100	0160G 05298	CA1025
A14R34 A14R35	06A3-1035		RESISTOR ION 5% 25W FC TC#-400/+700	01606	C4=1/8=T0=7152=F C81035
414033	0757-0279	1	RESISTOR 3.16K 1% .125W F TC#0+=100	03508	C4-1/8-T0-3161-F
414R36	0698-4453	1	RESISTOR 2.26K 1% .125W F TC=0+-100	03296	C4-1/8-T0+2261-F
414R37 414R3R	0757-0465		RESISTOR 100K 1% ,125W F TC#0+-100	03298	C4-1/8-10-1003-F
414839	0698-3155		RESISTOR 3.3K 5% .25W FC TC=400/+700 RESISTOR 4.64K 1% .125W F TC=0+-100	0160G 03298	C83325
A14R40	0757-0401	5	RESISTOR 100 11 .125W F TC+0++100	03298	C4-1/8-T0+4641-F C4+1/8-T0+101-F
A14R41	0757-0401	Í	RESISTON 100 1% .125W F TC=0+=100		
A14R42	0683-1055		RESISTUR IM 52 .25% FC TC==800/+900	03298 0160G	C4-1/8-T0-101-F C81055
414RU3 414RU4	0683-1055		RESISTOR IN 5% .25W FC TC#+800/+900	01606	C81055
14845	0698-3157 0757-0465		RESISTOR 19.6K 1% .125W F TC#0+=100 RESISTOR 100K 1% .125W F TC#0+=100	03298	C4=1/8=T0=1962=F
414R46		1		03298	C4-1/8-T0+1003-F
414Ra7	0683-1035 0683-1035		RESISTUR 10K 5% .25% FC TC==400/+700 RESISTOR 10K 5% .25% FC TC==400/+700	01606	CB1035
14848	0683-1035		RESISTOR 10K 5% .25W FC TC#=400/+700	0160G 0160G	C81035 C81035
14850	0683-3325 0683-3325		RESISTOR 3.3K 51 .25W FC TC=+400/+700	01606	CB3325
			RESISTON 3.3K 52 .25W FC TC==400/+700	0160G	C85329
14R51 14R52	0683-3335		RESISTOR 33K 5% .25W FC TC#-400/+800	0160G	C83335
14853	0083-3335 0083-3335		RESISTOR 33K 5% .25W FC TC#=400/+800 RESISTOR 33K 5% .25W FC TC#=400/+800	01606	C83535
14854	0683-3335	1	RESISTOR 33% 5% .25% FC TC#+400/+800	01606	CB3535 CB3535
14855	06A3-3335		RESISTOR 33K 51 .25W FC TC = 400/+800	0160G	C83335
14856	0683-3335		HESISTON 33K 5% .25% FC TC=-400/+800	01605	CB 3335
14857 14858	06A3-4725		RESISTOR 4,7K 51 .25W FC TC#=400/+700	01606	C84725
14859	0698-4157	S	RESISTOR 10K .1% .125W F TC#0++50 RESISTOR 10K .1% .125W F TC#0++50	89550	NC55
14860	0698+6943	2	RESISTOR 20K .11 .125W F TC=0+=50	03298 03298	NC55 NC55
14861	0698-6943				
19862	n6A3-3925	2	RESISTOR 20K .1% .125W F TC=0+-50 RESISTOR 3.9K 5% .25W FC TC=+400/+700	03298 0160G	NC55 C83925
14R63 14R64	2551-1840	s	RESISTOR 1.2K St .25W FC TC==400/+700	01606	C81225
19865	0683-3925		RESISTOR 3.9K 5% .25W FC TC==000/+700 RESISTOR 1.2K 5% .25W FC TC==000/+700	01606	CB3925
1484				01606	C81225
14865 14867	0683+3335 0683+1245	1	RESISTOR 33K 5% 25% FC TC#-400/+800	01606	C83335
14868	0683+4735		RESISTOR 120K 5% 25W FC TC==800/+900 RESISTOR 47K 5% 25W FC TC==400/+800	0160G 0160G	C81245 C84735
14869	0683-3335		RESISTOR 33K SX .25W FC TCa-400/+800	0160G	CH \$335
	0683-4725	1	RESISTOR 4.7K St .25W FC TC=+400/+700	01606	C84725
14R70		2	ICILIN OP. AMPL. FET-INPT	28480	1826-0136
1 4R70 1 4th	1826-0136	<u>د ا</u>			
1 4R70	1826-0271		IC 741 OP AMP	0340F	LM741CN
1 9870 1 911 1 912 1 913 1 913			IC 710 COMPARATOR	0340F 0223G	LM741CN 710HC
1 4170 1 4131 1 4122 1 4133 1 4133	1826-0271 1820-0321			0340F	LM741CN

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A14U6 A14U7 A14U8 A14U9 A14U9	1826-0314 1826-0326 1820-0054 1820-0630 1826-0180	1	IC OP AMP IC OP AMP IC GATE TTL NAND QUAD 2-INP IC MISC TTL IC 555	0340F 07933 0223G 0203G 0291J	LF 356H HC45580H 7400PC MC4044P NE555V
414(1) 414(1)	1820-0379 1820-0075 1820-1210 1820-1210 1820-1210 1820-1490	1 1 2 5	IC GATE TTL M AND-UR IC FF TTL J-K PULSE CLEAR DUAL IC GATE TTL LS AND-UR-INV DUAL 2-INP IC GATE TTL LS AND-UR-INV DUAL 2-INP IC CNIR TTL LS DECD ASYNCHRO	0223G 0223G 0169H 0169H 0169H	74H52PC 7475PC 8N74L851N 8N74L851N 8N74L851N
415			NUT ASSIGNED		
A10			NOT ASSIGNED		
41 7			NOT ASSIGNED		
A 1 H			NUT ASSIGNED		
A19			NUT ASSIGNED		
05V			NUT ASSIGNED		
421	04262=66521 04262=26521	1	KEYHOARO & DISPLAY BOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04262=66521 04262=26521
A21C1 A21C2 A21C3 A21C3 A21C5	01#0=0291 0160=3451 0160=3451 0160=3451 01#0=0376	1	CAPACITOR=FXD 1UF+=10X 35VDC TA CAPACITUR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CEH CAPACITOR=FXD .01UF +80=20X 100VDC CEH CAPACITOR=FXD .47UF+=10X 35VDC TA	0420J 28480 28480 0420J	1500105x903542 0160-3451 0160-3451 0160-3451 15004744903582
A21C6 A21C7 A21C8 A21C9 A21C10	0180=0197 0180=0197 0180=0197 0180=0197 0140=0197	6	CAPACITOR=FXD 2,2UF++10X 20VDC TA CAPACITUR=FXD 2,2UF+=10X 20VDC TA CAPACITOR=FXD 2,2UF+=10X 20VDC TA CAPACITUR=FXD 2,2UF+=10X 20VDC TA CAPACITUR=FXD 200PF +=5X 300VDC MICA	0420J 0420J 0420J 0420J 72136	1507225X9020A2 1507225X902042 1507225X902042 1507225X902042 1507225X902042 0M15F201J03004V1CR
A21CH1 A21CH2 A21CH3 A21CH4 A21CH5	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIUDE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
421CR6 421CR7	1901-0040 1901-0040		DIODE-SWITCHING SOV SOMA 2NS DD-35 DIODE-SWITCHING SOV SOMA 2NS DD-35	28480 28480	1901-0040 1901-0040
421J1	1251-0541	2	CUNNECTOR 34-PIN H RECTANGULAR	70381	3431+1002
42191	1854-0019	1	TRANSISTOR NPN SI TO-18 PD=360MM	28480	1854-0819
A21R1 A21R2 A21R3 A21R4 A21R5	0683-4715 0683-4715 0683-4715 0683-4715 0683-4715		HESISTUR 470 5% .25W FC TC#=400/+000 RESISTOR 470 5% .25W FC TC#=400/+000	0160G 0160G 0160G 0160G 0160G	CB4715 CB4715 CB4715 CB4715 CB4715
421R6 A21R7 A21R8 A21R9 A21R9	0683-3305 0693-1015 0683-1015 0683-1015 0683-4715	1	RESISTON 33 5% .25m FC TC#+400/+500 RESISTOP 100 5% .25m FC TC#+400/+500 RESISTOR 100 5% .25m FC TC#+400/+500 RESISTOM 100 5% .25m FC TC#+400/+500 RESISTOM 470 5% .25m FC TC#+400/+600	0160G 0160G 0160G 0160G 0160G	C83305 C81015 C81015 C81015 C81015 C84715
A21R11 A21R12 A21R13 A21R14 A21R14	0683-4715 0683-4715 0683-4715 0683-4715 0683-4715		RESISTOR 470 St .25% FC TC==000/+600 RESISTOR 470 St .25% FC TC==000/+600 RESISTOR 470 St .25% FC TC==000/+600 HESISTOR 470 St .25% FC TC==00/+600 RESISTOR 470 St .25% FC TC==400/+600	0160G 0160G 0160G 0160G 0160G	CH0715 CH0715 CH0715 CH0715 CH0715 CH0715
A21R16 A21R17 A21R18 A21R19 A21R20	0683-1015 0643-1015 0683-9715 0683-9715 0683-9715		RESISTOR 100 5% .25% FC TC#-400/+500 RESISTOR 100 5% .25% FC TC#-400/+500 RESISTOR 470 5% .25% FC TC#-400/+600 RESISTOR 470 5% .25% FC TC#-400/+600 RESISTOR 470 5% .25% FC TC#-400/+600	0160G 0160G 0160G 0160G 0160G	CR1015 C81015 C84715 C84715 C84715 C84715
A21821 A21822 A21823 A21824 A21825	0683-4715 0683-4715 0683-4715 0683-4715 0683-4715		RESISTOR 470 5% .25% FC 1C#-400/+600 RESISTOM 470 5% .25% FC TC#-400/+600 RESISTOR 470 5% .25% FC TC#-400/+600 RESISTOR 470 5% .25% FC TC#-400/+600 RESISTOR 470 5% .25% FC TC#-400/+600	0180G 0180G 0180G 0180G 0180G	C84715 C84715 C84715 C84715 C84715 C84715

Table 6-3.	Replaceable	Parts	(Cont'd).
------------	-------------	-------	-----------

A21826 Och3-0715 HtSISTOR 470 St.25 A21827 Och3-1035 RtSISTOR 10K St.25 A21829 Och3-1035 RtSISTOR 10K St.25 A21829 Och3-1035 RtSISTOR 10K St.25 A21830 Och3-1035 RtSISTOR 10K St.25 A21831 Och3-1035 RtSISTOR 10K St.25 A21832 IA10-0164 S A2101 IA20-1415 S A2102 IA20-1270 I IC CMPS TIL LS OPED I IC CMPS TIL LS OPED A2101 IA20-1270 I IC CMPS TIL LS OPED A2103 IA20-1200 I IC CMPS TIL LS OPED A2104 IA20-1200 I IC CMPS TIL LS OPED A2101 IA20-1200 I IC GAPE TIL LS NAND A2101 IA20-1200 I IC GAPE TIL LS NAND A2101 IA20-1061 18 IC GAPE TIL LS NAND A2101 IA20-107 B IC GAPE TIL LS NAND A2101 IA20-1081 18 IC GAPE TIL LS NAND A2101 <th>FC TC==000/+800 0 FC TC==000/+700 0 FC TC==400/+700 0 FC TC</th> <th>0160G CH4715 0160G CB4715 0160G CB1035 0160H SN/aLS 0169H SN/aLS 0379D AM7aLS 0379D AM7aLS 0379D AM7aLS 0379D AM7aLS 0169H SN7aLS 0379D AM7aLS <th>164 13N 190N 21N 05N 05N 05N 05N 05N 05N 05N 05N 00N 175A 175A 175A 175A 175A 175A 175A 175A</th></th>	FC TC==000/+800 0 FC TC==000/+700 0 FC TC==400/+700 0 FC TC	0160G CH4715 0160G CB4715 0160G CB1035 0160H SN/aLS 0169H SN/aLS 0379D AM7aLS 0379D AM7aLS 0379D AM7aLS 0379D AM7aLS 0169H SN7aLS 0379D AM7aLS <th>164 13N 190N 21N 05N 05N 05N 05N 05N 05N 05N 05N 00N 175A 175A 175A 175A 175A 175A 175A 175A</th>	164 13N 190N 21N 05N 05N 05N 05N 05N 05N 05N 05N 00N 175A 175A 175A 175A 175A 175A 175A 175A
A21R32 1810-0164 5 NETWORK-RES 9-PIN-SI A21U1 1620-1279 1 1C CMPSTILL SUBC 11 A21U3 1620-1279 1 1C CMPSTILL SUBC 11 A21U3 1620-1270 1 1C CMPSTILL SUBC 11 A21U3 1620-1270 1 1C MV TIL SUBC 11 A21U5 1620-1270 1 1C MV TIL SUBC 11 A21U5 1620-1270 1 1C MV TIL SUBC 11 A21U5 1620-1200 1C INV TIL SUBC 11 1E NUTL 12 MEX 1- A21U1 1620-1195 1C GATE TIL SUBC 00 1E INV TIL 12 MEX 1- A21U1 1620-1195 1C GATE TIL 12 NUTL 12 MAX 1E GATE TIL 12 NUTL 12 MAX A21U11 1620-1197 1 1C GATE TIL 12 NUTL 12 MAX A21U13 1620-1197 1 1C FF TIL 12 NUTY A21U14 1620-1195 1C FF TIL 12 NUTY 12 NUTY A21U15 1620-1195 1C FF TIL 12 NUTY 12 NUTY A21U14 1620-1195 1C FF TIL 12 NUTY 12 NUTY A21U14 1620-1195 1C FF TIL 12	P.15-PIN-SPCG 2 LS NAND OUAL G-INP 0 LS NAND OUAL G-INP 0 INP 0 INP 0 OUSS-EDGE-TRIG COM 0 OUSS-EDGE-TRIG COM 0 UUAD 2-INP 0 UUAD 2-INP 0 OSS-EDGE-TRIG COM 0 OUSS-EDGE-TRIG COM 0 OUAD 2-INP 0 OSS-EDGE-TRIG COM 0 OLAD 1-TNP 0 LS 2-TO-1-LINE QUAD 0 IAD 2-INP 0 IAD 2-INP 0 IAD 2-INP 0	28480 1810-0 0169H SN/4LS 0179D AM74LS 0169H SN/4LS 0179D AM74LS 01579D SN74LS 01579D SN74LS <td>164 15N 190N 21N 05N 05N 05N 05N 175A 1</td>	164 15N 190N 21N 05N 05N 05N 05N 175A 1
A2102 1220-1210 1 CATE-TILL MONOSTER A2103 1420-1270 1 TC MV TL L MONOSTER A2104 1420-1200 1 TC MV TL LS MEX 1- A2105 1820-1200 1 TC MV TL LS MEX 1- A2104 1820-1200 1 TC MV TL LS MEX 1- A2107 1820-1195 15 TC FF TTL LS D-TYPE A2101 1820-1195 15 TC GATE TTL LS D-TYPE A2101 1820-1195 15 TC GATE TTL LS D-TYPE A2101 1820-1195 15 TC GATE TTL LS D-TYPE A21013 1820-1197 8 TC GATE TTL LS D-TYPE A21014 1820-1195 1 TC FF TTL LS D-TYPE A21015 1820-1195 1 TC FF TTL LS D-TYPE A21016 1420-1195 1 TC FF TTL LS D-TYPE A21017 1820-1195 1 TC FF TTL LS D-TYPE A21014 1820-1195 1 TC FF TTL LS D-TYPE A21017 1820-1195 1 TC FF TTL LS D-TYPE A21018 </td <td>IP_COUNN SYNCHHO 0 INP 0 INDAD 2=INP 0 INDAD 2=INP 0 INDAD 2=INP 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDAL 2 INDAL 2 INDAL 2 INDAL 2 INDAL 2 INDAL 2 IND 0</td> <td>0169H SN74L3 0169H SN74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D SN74L3 0179D SN74L3 01</td> <td>190N 25N 05N 05N 175A 175A 03N 00N 157N 00N 157N 175A 175A 175A 175A 175A 175A 175A 175A</td>	IP_COUNN SYNCHHO 0 INP 0 INDAD 2=INP 0 INDAD 2=INP 0 INDAD 2=INP 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDS=EDGE-TRIG 0 INDAL 2 INDAL 2 INDAL 2 INDAL 2 INDAL 2 INDAL 2 IND 0	0169H SN74L3 0169H SN74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D AM74L3 0179D SN74L3 0179D SN74L3 01	190N 25N 05N 05N 175A 175A 03N 00N 157N 00N 157N 175A 175A 175A 175A 175A 175A 175A 175A
42107 1420-1195 15 17 17 17 17 42108 1820-1197 1 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 <	INP 0 PUS-EDGE-TRIG COM 0 PUS-EDGE-TRIG COM 0 PUS-EDGE-TRIG COM 0 PUS-EDGE-TRIG COM 0 PUAD 2-INP 0 PUAD 2-INP 0 PUAD 2-INP 0 PUAD 2-INP 0 PUS-EDGE-TRIG 0 POS-EDGE-TRIG COM 0 PUS-EDGE-TRIG 0 L-LINP 0 LS 2-TO-1-LINE 0	0169H SN74LS 0379D AM74LS 0379D AM74LS 0379D AM74LS 0379D AM74LS 0169H SN74LS 0379D AM872LS 0379D AM872LS 0379D SN74LS 0379D SN74LS 0169H SN74LS 0169H SN74LS 0169H SN74LS 0169H SN74LS 0159D AM74LS 0159D AM74LS 0179D SN74LS 0169H SN74LS 0169H SN74LS 0169H SN74LS 0169H SN74LS	03N 1754 1754 03N 00N 157N 00N 7aN 1754 1754 1754 1754 1755 1754 155N 1754 155N 1754
A21012 1A20-1107 B IC MURPATA-SEL TIL A21013 1620-1107 IC GATE TIL LS DATE A21013 1620-1107 IC GATE TIL LS DATE DATE A21014 1A20-1105 IC FF TIL LS D-TYPE A21016 1A20-1105 IC FF TIL LS D-TYPE A21017 1A20-1105 IC FF TIL LS D-TYPE A21017 1A20-1105 IC FF TIL LS D-TYPE A21020 1A20-1245 Z IC DEF TIL LS D-TYPE A21020 1A20-1245 Z IC DEF TIL LS D-TYPE A21022 1A20-1470 IC MURPATASE TIL LS D-TYPE A21023 1A20-1470 IC EC DRYR TIL DS DRYR A21024 1A20-1473 IC IC CAPAC TIL LS AND A2220	LS 2-TO-1-LINE QUAD 0 DUAD 2-INP 0 DOS-EDGE-TRIG 00 POS-EDGE-TRIG 01 POS-EDGE-TRIG 01 POS-EDGE-TRIG 01 POS-EDGE-TRIG 01 POS-EDGE-TRIG 01 POS-EDGE-TRIG 01 LS 2-TO-1-LINE 01 IAD 2-INP 1 BOARD ASSEMBLY 2H POARD ASSEMBLY	03790 SN7aL3 0169H SN7aL3 0169H SN7aL3 0169H SN7aL3 03790 AM7aL3 03790 AM7aL3 03790 AM7aL3 03790 AM7aL3 0169H SN7aL3 03790 AM7aL3 03790 AM7aL3 03790 AM7aL3 03790 SN7aL3 03790 SN7aL3 03790 SN7aL3 03790 SN7aL3 03790 SN7aL3	157N OON 77A 175A 175A 175A 175A 155N 175A 155N 175A 157N 8N
A21017 1020-1195 1C FF TTL LS D-TYPE A21017 1020-1195 1C FF TTL LS D-TYPE A21019 1020-1195 1C FF TTL LS D-TYPE A21020 1020-1195 1C FF TTL LS D-TYPE A21020 1020-1245 2 1C DCDP TTL LS D-TYPE A21022 1020-1041 1C DAWA TTL BUS DHVM A21023 1020-1041 1C DAWA TTL BUS DHVM A21023 1020-1041 1C DAWA TTL BUS DHVM A21025 1020-1041 1C DAWA TTL BUS DHVM A21025 1020-1041 1C MURNDATASEL TTL A21025 1020-1041 120 DAWM A21025 1020-1041 120 DAWM A2220 04262-66522 2 04262-26522 2 DISPLAY CUNTROL & RA A22C1 0140-3451 CAPACITOR-FXD 10FFX A22C2 0140-3451 CAPACITOR-FXD 010F A22C3 0160-3451 CAPACITOR-FXD 010F A22C4 0160-2204 CAPACITOR-FXD 010F A22C5 0160-2204 CAPACITOR-FXD 010F A22C6 0160-2204 CAPACITOR-FXD 010F A22C6 0160	103=EDGE-THIG COM 0 104=DIAL 2=INP 0 104=0 0 104=0 0 104=0 0 104=0 0 104=0 0 104=0 0 104=0 0 104=0 0 104 0 105 0 104 0 105 0 106 0 107 0 108 0 109 0 100 0 100 0 101 0 102 0 103 0 104 0 105 0 106 0 107 0 108 0 </td <td>03790 AM74L3 03790 AM74L3 03790 AM74L3 01694 SN74L5 03790 AM74L5 03790 AM54L5 03790 AM5126 03790 SN74L5 01694 SN74L3 01694 SN74L5</td> <td>1754 1754 1754 155N 1754 157N 8N 08N</td>	03790 AM74L3 03790 AM74L3 03790 AM74L3 01694 SN74L5 03790 AM74L5 03790 AM54L5 03790 AM5126 03790 SN74L5 01694 SN74L3 01694 SN74L5	1754 1754 1754 155N 1754 157N 8N 08N
421U22 1820-1081 IC DRUG TTC BUS DUVG 421U23 1820-1070 IC MUXP/DATA-SEL TTL 421U24 1820-1070 IC MUXP/DATA-SEL TTL 421U25 1870-1201 5 IC GATE TTL LS AND D 422 04262-66522 2 DISPLAY CUNTROL & RA 422 04262-66522 2 DISPLAY CUNTROL & RA 4222 04262-26572 2 DISPLAY CUNTROL & RA 4222 0160-3451 CAPACITOR-FXD 0.010F CAPACITOR-FXD 0.010F 4222 0160-3451 CAPACITOR-FXD 0.010F A22C1 4222C1 0160-2204 CAPACITOR-FXD 100PF CAPACITOR-FXD 100PF 422C2 0160-2204 CAPACITOR-FXD 100PF CAPACITOR-FXD 100F	GUAD 1-1NP 01 LS 2-TO-1-LINE GUAD 01 IAU 2-INP 01 I BOARD ASSEMBLY 2H	03790 AMBT26 03790 SN74LS 01694 SN7414 01694 SN7414 28480 04202=	157N 8N D8N
04262-26522 PC HAAHD, BLANK A22C1 0180-0291 CAPACITUR-FXD TUF+1 A22C2 0160-3451 CAPACITUR-FXD TUF+1 A22C3 0160-3451 CAPACITUR-FXD TUF+1 A22C4 0160-3451 CAPACITUR-FXD TUF+1 A22C5 0160-3451 CAPACITUR-FXD TUF+1 A22C6 0160-3451 CAPACITUR-FXD TUF+1 A22C6 0160-2204 CAPACITUR-FXD TUF+1 A22C6 0160-2201 CAPACITUR-FXD TUF+1 A22C6 0160-2201 CAPACITUR-FXD TUF+1 A22C7 0160-2201 CAPACITUR-FXD TUF+1 A22C6 0160-2203 CAPACITUR-FXD TUF+1 A22C10 0160-0939 CAPACITUR-FXD TUF+1 A22C12 0160-2205 CAPACITUR-FXD TUF+1 A22C13 0150-0121 CAPACITUR-FXD TUF+1 A22C14 0150-0121 CAPACITUR-FXD TUF+1 A22C15 0150-0121 CAPACITUR-FXD TUF+1 A22C16 0150-0121 CAPACITUR-FXD TUF+1 A22C17 0150-0121 CAPACITUR-FXD TUF+1 A22C16 015	54		
A22C2 0100-3451 CAPACITOR-FXD 010F A22C3 0160-3451 CAPACITOR-FXD 010F A22C3 0160-3451 CAPACITOR-FXD 010F A22C4 0160-3451 CAPACITOR-FXD 010F A22C5 0160-3451 CAPACITOR-FXD 010F A22C6 0160-2204 CAPACITOR-FXD 100F A22C7 0160-2201 CAPACITOR-FXD 100F A22C6 0160-0339 CAPACITOR-FXD 100F A22C7 0160-0291 CAPACITOR-FXD 10F+ A22C6 0160-0399 CAPACITOR-FXD 10F+ A22C10 0160-0939 CAPACITOR-FXD 10F+ A22C12 0160-0121 CAPACITOR-FXD 10F+ A22C13 0150-0121 CAPACITOR-FXD 10F+ A22C14 0150-0121 CAPACITOR-FXD 10F+ A22C15 0150-0121 CAPACITOR-FXD 10F+ A22C16 0150-0121 CAPACITOR-FXD 10F+ A22C17 0150-0121 CAPACITOR-FXD 10F+ A22C16 0150-0121 CAPACITOR-FXD	* 15 MDC 14		
A22C7 0160-2261 2 CAPACITOR-FXD 15PF A22C8 0160-0939 CAPACITOR-FXD 15PF A22C9 0180-0291 CAPACITOR-FXD 10F+-1 A22C10 0160-0939 CAPACITOR-FXD 430PF A22C11 0160-0939 CAPACITOR-FXD 430PF A22C12 0160-0939 CAPACITOR-FXD 430PF A22C13 0160-2205 CAPACITOR-FXD 430PF A22C14 0150-0121 CAPACITOR-FXD 120PF A22C15 0150-0121 CAPACITOR-FXD 10PF A22C16 0150-0121 CAPACITOR-FXD 10F + A22C17 0150-0121 CAPACITOR-FXD 10F + A22C18 0150-0121 CAPACITOR-FXD 10F + A22C19 0150-0121 CAPACITOR-FXD 10F + A22C19 0150-0121 CAPACITOR-FXD 10F + A22C10 0150-0121 CAPACITOR-FXD 10F + A22C10 0150-0121 CAPACITOR-FXD 10F + A22C19 0150-0121 CAPACITOR-FXD 10F +	80-201 10000C CEH 28 80-201 10000C CEH 28 80-201 10000C CEH 28	0420J 150D10 28480 0160-5 28480 0160-3 28480 0160-3 26480 0160-3	451
A22C12 0160-2205 CAPACITOR-FXD 120FF A22C13 0150-0121 CAPACITOR-FXD 10F A22C14 0150-0121 CAPACITOR-FXD 10F A22C15 0150-0121 CAPACITOR-FXD 10F A22C16 0150-0121 CAPACITOR-FXD 10F A22C16 0150-0121 CAPACITOR-FXD 10F A22C17 0150-0121 CAPACITOR-FXD 10F A22C18 0150-0121 CAPACITOR-FXD 10F A22C20 0150-0121 CAPACITOR-FXD 10F A22C20 0150-0121 CAPACITOR-FXD 10F	5% 500VDC CFR0+=30 28 =5% 300VDC MICA0+70 28 % 35VDC TA 04	28480 0160-2. 28480 0150-2. 28480 0150-0 9420J 150D10 28480 0160-0	201 939 58903582
A22C17 0150-0121 CAPACITUR-FXD 1UF A22C18 0150-0121 CAPACITUR-FXD 1UF A22C19 0150-0121 CAPACITUR-FXD 1UF A22C20 0150-0121 CAPACITUR-FXD 1UF	-5% 500VDC MICAO+70 28 0-20% 50VDC CER 28 0-20% 50VDC CER 28	28480 0160-0 28480 0160-2 28480 0150-0 28480 0150-0 28480 0150-0	205 121 121
422CR1 1902+0041 DIODE+2NR 5.11V 5% D	0=20% 50VDC CEH 28 0=20% 50VDC CER 28 0=20% 50VDC CEH 28	28480 0150+0 28480 0150+0 28480 0150+0 28480 0150+0 28480 0150+0 28480 0150+0	21 21 21
42231 1200-0658 5 SUCKET-1C 24-CONT DI		203G SZ 109	
A2201 1853-0084 8 TRANSISTOR PNP 2N491 A2202 1853-0084 8 TRANSISTOR PNP 2N491 42203 1853-0084 TRANSISTOR PNP 2N491 A2204 1853-0084 TRANSISTOR PNP 2N491 A2205 1853-0084 TRANSISTOR PNP 2N491 A2205 1853-0084 TRANSISTOR PNP 2N491	SI PDE30W FIE3MHZ 02	2036 2N491A 2036 2N491A 2036 2N491B 2036 2N491M 2036 2N491B	
42206 1853-0084 TRANSISTUR PNP 20091 42207 1853-0084 THANSISTOR PNP 20091 42208 1853-0084 TRANSISTUR PNP 20091	51 PD=30+ F1=3MH2 02	2036 204918 2036 204918	
A22R1 0683-2715 RESISTOR 270 St. 25% A22R3 0683-2715 RESISTOR 270 St. 25% A22R3 0683-2715 RESISTOR 270 St. 25% A22R4 0683-2715 RESISTOR 270 St. 25% A22R5 0683-2715 RESISTOR 270 St. 25% A22R5 0683-2715 RESISTOR 270 St. 25%	FC TC==00/+600 01 FC TC==00/+600 01 FC TC==00/+600 01	160G CH2715 160G CH2715 160G CH2715 160G CH2715 160G CH2715 160G CH2715	
422P6 06%3-2715 RESISTOR 270 St.25% 422R7 06%5-2715 RESISTOR 270 St.25% 422R8 0683-2715 RESISTOR 270 St.25% 422R9 0683-2715 RESISTOR 270 St.25% 422R9 0683-2715 RESISTOR 270 St.25% 422R9 0683-6805 RESISTOR 68 St.25% 422R10 0683-6805 RESISTOR 68 St.25%	FC TC==400/+600 01	160G CH2715 160G L82715 160G C82715	

Section VI Table 6-3

Table 6-3.	Replaceable	Parts	(Cont'd).
------------	-------------	-------	-----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A22R11 A22F12 A22R15 A22F19	0683-6805 0683-6805 0683-6805 0683-6805 0683-6805		RESISTOR 68 5% .25% FC TC==400/+500 RESISTOR 68 5% .25% FC TC==400/+500	0160G 0160G 0160G 0160G 0160G	C#6805 C#6805 C#6805 C#6805 C#6805
AZZR15 AZZR16 AZZR17 AZZR18 AZZR18 AZZR19	0683-6805 0683-6805 0683-2725 0683-1825 0683-4725 1810-0121	2	RESISTOR 68 5% .25% FC TC==400/+500 RESISTOR 2.7K 5% .25% FC TC==400/+700 PESISTOR 1.6K 5% .25% FC TC==400/+700 RESISTOR 4.7K 5% .25% FC TC==400/+700 NETWORK=RES 9=PIN=SIP .15=PIN=SPCG	0160G 0160G 0160G 0160G 28480	CH 6805 CH 2725 CH 1875 CH 4725 1810-0121
A22R20 A22P21 A22P22 A22R23 A22R24 A22R24 A22R25	1A10-0205 1A10-0206 0683-1025 0663-1025 0663-1025	2	NETWORK-RES 8-PIN-SIP ,1-PIN-SPCG NETWORK-RES 8-PIN-SIP ,1-PIN-SPCG RESISTON 1K 5% ,25W FC TC=400/+600 RESISTON 1K 5% ,25W FC TC=400/+600 RESISTOR 1K 5% ,25W FC TC=400/+600	0248C 0374D 0160G 0160G 0160G	750-81-84,7K 43088-101-1055 C81025 C81025 C81025
AZZRZG AZZRZG AZZRZG AZZRZG AZZRZG AZZK30	0683+1025 0683+1025 0683+1025 0683+1025 0683+1025		RESISTUR 1K 5% ,25% FC T(x=400/+600 HESISTOR 1K 5% ,25% FC T(x=400/+600 RESISTOR 1K 5% ,25% FC T(x=400/+600 RESISTOR 1K 5% ,25% FC T(x=400/+600 RESISTOR 1K 5% ,25% FC T(x=400/+600	0160G 0160G 0160G 0160G 0160G	C#1025 C#1025 C#1025 C#1025 C#1025 C#1025
422R31 422R32 422R33 422R33 422R33		8	NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED		
422R36 422R37 422R38 422R38	1810-0164		NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NETWORK-RES 9-PIN-SIP .15-PIN-SPCG	28480	1810-0164 3101-0289
A2251 A22U1 A22U2 A22U3 A22U3	3101-0299 1820-0738 1820-1194 1820-1199 1820-1201	4 1 2 7 2	SWITCH, SLIDE 4-SPST IC DCDR TIL 2-TO-4-LINE DUAL 2-INP IC CNTR TIL LS BIN UP/DOWN SYNCHRD IC INV TIL LS MEX 1-INP IC GATE TIL LS AND GUAD 2-INP IC DCDR TIL BCD-TO-7-SEG	02036 0379D 0169H 0169H 0169H	MC74155P Am74L5195PC SN74L504N SN74L508N SN74L5247N
A22U5 A22U6 A22U7 A22U8 A22U8	1820-1688 1820-1490 1858-0033 1820-288 1820-268 1820-1470	2	IC MY TIL DUAL IC CMTR TIL LS DECD ASYNCHRU THANSISIOR IC SN7489N 64-81T RAM TIL IC MUXR/DATA-SEL TIL LS 2-TU-1-LINE QUAD	0203G 0169H 28480 0340F 0379D	MC4024P SN74L590N 1858-0033 DM7489N SN74L3157N
A 22U10 A 22U11 A 22U12 A 22U13 A 22U13	1820-1425 1820-1112 1820-1197 1820-1490 1820-1478	2	IC FF TTL LS D-TYPE POS-EDGL=INIG IC GATE TTL LS NAND QUAD 2-INP IC CNTR TTL LS DECD ASYNCHRO	0169H 0169H 0169H 0169H 0169H	SN74L8132N SN74L874N SN74L870N SN74L890N SN74L893N
A22116 A22117 A22118 A22119 A22119	1858-0033 1820-0628 1820-1470 1820-1081 1820-1081		THANSISTOR IC SN7489N 64-BIT RAM TTL IC MUR/DATA-SEL TTL LS 2-TO-I-LINE QUAD IC DRVK TTL BUS DRVH QUAD 1-INP IC DRVR TTL BUS DRVH QUAD 1-INP	28480 0340F 0379D 0379D 0379D	1858-0033 0M7489N SN74(5157N AM8726 AM8726
455A1 455A1 455A1	1820-1196 1818-0135 0410-0209	2	IC FF TTL LS D-TYPE PDS-EDGE-TRIG COM IC MC 6810L-1 1K RAM NMOS CRYSTAL, QUARTZ	0379D 0203G 28480	AM74L5174N MCo810L-1 0410-0209

F

Section VI Table 6-3

Ì

Reference	HP Part	Qty	Description	Mfr	
Designation	Number			Code	Mfr Part Number
A23	04262-66623 04262-26623		PROCESSOR & ROM BOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04262-66623 04262-26623
A23C1 A23C2 A23C3 A23C4 A23C4 A23C5	0160-2202 0180-1704 0180-0291 0180-0197 0180-0197		CAPACITOR-FXD 75pF 5% 300VDC CAPACITOR-FXD 47UF +-10% 6VDC TA GAPACITOR-FXD 1UF +-10% 35VDC TA CAPACITOR-FXD 2.2UF +-10% 20VDC TA GAPACITOR-FXD 2.2UF +-10% 20VDC TA	0420J 0420J 0420J 0420J 0420J	150D476X9006B2 150D105X9035A2 150D225X9020A2 150D225X9020A2
A23C6 A23C7 A23C8 A23C9 A23C10	0180-0229 0160-3451 0160-3451 0160-3451 0160-3451 0160-3451		CAPACITOR-FXD 33UF +-10% 10VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	0420J 28480 28480 28480 28480 28480	150D336X9010B2 0160-3451 0160-3451 0160-3451 0160-3451 0160-3451
A23CR1 A23CR2 A23CR3 A23CR4	1901-0040 1901-0040 1902-3158 1902-0048		D+ODE-SWITCHING 30V 50MA 2NS D0-35 D+ODE-SWITCHING 30V 50MA 2NS D0-35 D10DE, ZENER, 9.76V D10DE, ZENER, 6.81V	28480 28480 02236 02236	1901-0040 1901-0040 FZ7459 FZ7244
A2 3 J 1 A2 3 J 2 A2 3 J 3 A2 3 J 3 A2 3 J 4	1200-0438 1200-0468 1200-0468 1200-0468 1200-0608		SOCKET-IC 16-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOGKET-IC 40-CONT DIP-SLDR	0138J 28480 28480 28480 28480	583529-1 1200-0468 1200-0468 1200-0468 1200-0608
A23Q1 A23Q2 A23Q3 A23Q3 A23Q4	1853-0089 1854-0071 1854-0477 1854-0215		TRANSISTOR PNP 2N4917 SI PD=200MW FT=450MHz TRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN 2222A SI TO=18 PD=500MW TRANSISTOR NPN SI PD=350MW FT=300MHz	28480 0223G 0203G	2N4917 1854-0071 2N2222A SPS3611
A23R1 A23R2 A23R3 A23R4 A23R4 A23R5	0683-4725 0683-4725 0683-1025 0683-1025 0683-1035		RE5ISTOR 4.7K 5% .25W FC TC=-400/+700 RE&ISTOR 4.7K 5% .25W FC TC=-400/+700 RE&ISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700	0160G 0160G 0160G 0160G 0160G 0160G	CB4725 CB4725 CB1025 CB1025 CB1035
A23R6 A23R7 A23R8 A23R8 A23R9 A23R10	0683-1055 0683-1845 0683-1035 0698-3430 0683-5615		RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 180K 5% .25W FC TC=-800/+900 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 21.5 1% .125W F TC=0+-100 RESISTOR 560 5% .25W FC TC=-400/+600	0160G 0160G 0160G 03888 0160G	CB1055 CB1845 CB1035 RME 55-1/8-T0-21R5-F CB5615
A23R11 A23R12	0683-5625 1810-0164		RESISTOR 5.6K 5% .25W FC TC=-400/+700 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG	0160G 28480	CB5625 1810-0164
A23R13 A23R14	2100-2633		NOT ASSIGNED RESISTOR-TRMR 1k 10% C SIDE-ADJ 1-TRN	0365A	ET50X102
A2351	3101-0299		SWITCH SLIDE 4-SPST	28480	3101-0299
A23U1 A23U2 A23U3 A23U4 A23U4 A23U5	1820-1691 1820-1197 1820-0702 1820-0702 1820-1081		IC MICPROC MOS IC GATE TTL LS NAND QUAD 2-INP IG DCOR TTL L 4-TO-16-LINE 4-INP IG DCOR TTL L 4-TO-16-LINE 4-INP IG DRVR TTL BUS DRVR QUAD 1-INP	28480 0169H 0223G 0223G 0379D	1820-1691 SN74LS00N 93L11PC 93L11PC AM8T26
A23U6 A23U7 A23U8 A23U9 A23U10	1820-1081 1820-1195 1820-1196 1820-1112 1820-0471		IC DRVR TTL BUS DRVR QUAD 1-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG IC, INV TTL HEX 1-INP	0379D 0379D 0379D 0169H 0223G	AMBT26 AM74LS175A AM74LS174N SN74LS74N 7406PC
A23U11 A23U12 A23U13 A23U14 A23U14 A23U15 A23U16	1820-1195 1820-1201 1820-1197 1820-1197 1818-0423 1818-0424		IG FF TTL LS D-TYPE POS-EDGE-TRIG COM IG GATE TTL LS AND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC INV TTL LS HEX 1-INP IC, ROM MOS INTEL 2316 IC, ROM MOS INTEL 2316	0379D 0169H 0169H 0169H 28480 28480	AM74LS175A SN74LS08N SN74LS00N SN74LS04N 1818-0423 1818-0424
424	04262=66524 04262=26524	1	CUMPANATOR CONTROL BOARD ASSEMBLY PC HOARD, BLANK	54480 54480	04262~66524 04262~66524
424C1 424C2 424C3	0180-0229 0160-0229 0160-3451		CAPACITOR-FXD 33UF+-101 10VUC TA CAPACITOR-FXD 33UF+-101 10VOC TA CAPACITOR-FXD .01UF +80-201 100VDC CER	0420J 0420J 28480	150D330x901082 150D350x901082 0100-5451

Table 6-3. Replaceable Parts (Cont'd).

Section VI Table 6-3

Table 6-3.	Replaceable	Parts	(Cont'd).
------------	-------------	-------	-----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			DIODE-SWITCHING SOV SOMA 2NS DO-35	28480	1901-0040
424641	1901-0040	1	DIODE-SWITCHING JOV SOMA 2NS DU-35	28480	1901-0040
A24CH2 A24CH3	1901-0040		DIDDE-SWITCHING 30V SOMA 2NS DO-35	28480 28480	1901-0040 1901-0040
A24CR4	1901-0040		DIDDE-SWITCHING 30V 'SOMA 2NS DO-35 DIDDE-SWITCHING 30V SOMA 2NS DD-35	28480	1901-0040
AZACRS	1901-0040		DIDDE-SWITCHING SOV SOMA 2NS DO-35	28480	1901-0040
\$24CH6	1901+0040		SICKET-IC 16-CONT DIP-SLUR	0158J	583529=1
▲24J1	1200-0438			28480	0490-0235
AZak 1	0490-0235 0490-0235	6	RELAY, REED Relay, reed	28480	0400-0235
A24K2 A24K3	0490-0235		RELAY, REED	28480 24480	0490-0235 0490-0235
A24K4	0490-0235		RELAY, REED	28480	0440-0235
A24K5	0490-0235		RELAY, REED	28480	0490-0235
A2486	0490+0235		RELAY, REED	02178	15-4435-14
429L1	9100+1618	1	COIL-MLD 5.60H 10% 0#45 .1550x.375LG	28480	1454-0071
A2401	1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MH FT=200MH2 Transistor NPN SI PD=300MH FT=200MH2	28480	1854+0071
424R1	0683-4715		RESISTOR 470 5% .25% FC TC#-400/+600	01606	CR4715
A24R7	0683-4725		RESISTON 4.7K 5% 25W FC TC#+4007+700	01606	CH4725 CH4725
424R3	0683-4725		RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	01606	CH4725
424R4	0683-4725 0683-4725		RESISTOR 4.7K SX .25W FC 100400/+700	0100G	CR4725
	0683-2715	1	RESISTOR 270 5% .25W FC TC==400/+600	0160G	C82715
A24R6 A24R7	0683-2715		ALEXISTOR 270 SX .25W FC TC==400/+600	0160G 0160G	C82715 C82715
A2488	0683-2715		RESISTOR 270 5% ,25% FC TC#-400/+600	01606	682715
A24R9 A24R10	0883-2715 0683-2715		RESISTUR 270 5% 25W FC 1C=400/+600 RESISTOR 270 5% 25W FC 1C=400/+600	0160G	CB2715
424811 424812	0683-2715 1810-0164		RESISTON 270 5% 25% FC TC#-400/+600 Network-Res 9-PIN-SIP .15-PIN-SPCG	0160G 28480	CH2715 1810+0164
42401	1420-1112		IC FF TTL LS D-TYPE PU3-EDGE-TRIG	01698	SN74L 8744 SN74L 805N
42402	1420-1200	1	IC INV TTL LS HEX 1-INP IC FF TTL LS D+TYPE POS-EDGE+THIG COM	0169H 03790	AM74L5174N
42403	1820-1190 1820-1199	I	IC INV TTL LS HEX 1-INP	0169H	SN 74L SO4N
12400 12405	1820-1199		IC INV TTL LS MEX 1-INP	01698	SN74L 504N
AŻ4U6	1820-1415		IC SCHMITT-TRIG TTL LS NAND DUAL 4-INP IC DRVR TTL BUS DRVR QUAD 1-INP	0169H 0379D	SN74LS13N Ambt20
A24U7	1820-1081	1	IC INV TTL HEX 1-INP	95220	7406PC
424U9	1820-0668	2	IC AFR TTL NON-INV HEX 1-INP IC DCDR TTL BCD-TO-DEC 4-TO-10+LINE	0223G 0169H	74078C 58741458
424010	1820-0491				AM74L51754
424(11)	1820-1195	1	IC FF TTL LS DATYPE POSAEDGEATRIG COM	03790	AM8126
A24U12 A24U13	1820-1081	1	IC DRVR TTL BUS DRVR QUAD 1-INP IC DRVR TTL BUS DRVR QUAD 1-INP	03790	AMRIZA
424W1	04261=72009	3	CABLE ASSEMBLY	28480	U#261-72009
425	04262+66525 04262+26525		HP-18 INTERFACE BUARD ASSEMBLY PC BOARD, BLANK	28480 28480	04262-66525 04262-26525
			CAPACITOR-FXD 1UF+=10% 35VDC TA	0420J	15001052903542
. 425C1 . 425C2	0180-0291 0160-3451	1	CAPACITOR-FXD .010F +60-20% 100VDC CER	28480	0160+3451
42503	0160-3451		CAPACITON-FXD .010F +80-20% 100VDC CER	28480	0160-3451 0160-3451
42504	0160-3451 0160-2204		CAPACITOR+FXD .01UF +80-20% 100VDC CEH CAPACITOR+FXD 100PF +-5% 300VDC MICA0+70	28480	0160-3294
12506 12507	0160-2204 0160-0153	1	CAPACITOR-FXD 100PF +=52 300VDC MICA0+70 CAPACITOR-FXD 1000PF +=102 200VDC POLYE	28480 0420J	545610545 0100-5504
425J1	1251-0541 1200-0438		CONNECTOR 34-PIN M RECTANGULAR Socket-IC 16-Cont DIP-SLDR	70381 0138J	3431-1002 583529-1
SL25A	1854-0071		THANSISTOR NPN SI PD#300MH FT#200MHZ	28480	1854-0071
12501 12581	0683-4715	1	RESISTOR 470 5% .25W FC TC=-400/+600	01606	C84715
A25R2	0683-4715		RESISTOR 470 5% 25W FC TC=-4007+600	0160G	C84715 C84715
A25R3	0683-4715	1	RESISTOR 470 5% -25# FC TC#+400/+600 RESISTUR 470 5% -25# FC TC#+400/+600	0160G	C84715
425R9 425R5	0683-0715 0683-1825	1	RESISTOR 1.8K 51 .25W FC TC==400/+700	01606	CH1825
125R6 -425R7	1810-0136 1810-0125	2	HETWORK-RES 10-PIN=31P _1=PIN=3PCG NETWORK-RES B=PIN=31P _125=PIN=SPCG	28480 0248C	1810+0130 750 -
42501	1820-1197	1	IC GATE TTE LS NAND QUAD 2-INP	01694	SN74LS00N
42502	1420-1558	2	IC MISC TTL+ WUAD	0203G 0203G	MC 3441P MC 3441P
A25U3	1820-1558	1	IC MISC ITL+ GUAD IC INV TTL LS MEX 1-INP	0169H	SNTALSOAN
A25U4 A25U5	1820-1199 1820-0269	1		9553G	7403PC
				1	
		1			
	l l			1	

P

Section VI Table 6-3

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
42506 42507 42508 42509 42509	1820+1199 1820+1201 1820+1201 1820+1195 1820+1195 1820+1470		IC INV TIL LS HEX I-INP IC GATE TIL LS AND QUAD 2-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC MUXR/DATA-SEL TIL LS 2-TO-1-LINE QUAD	0169H 0169H 0379D 0379D 0379D	8N74L804N 8N74L808N AM74L8175Å AM74L8175A 8N74L8157N
A25U11 A25U12 A25U13 A25U14 A25U15	1#20-1470 1820-1195 1#20-1195 1#20-1081 1#20-1081		IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DRVR TTL BUS DRVR QUAD 1-INP IC DRVR TTL BUS DRVR QUAD 1-INP	0379D 0379D 0379D 0379D 0379D 0379D	SN74L 8157N AM74L 8175A AM74L 8175A AM8726 AM8726
425016 425017 425018 425019 425020	1820-1061 1820-1081 1820-1081 1820-1081 1820-1081 1820-0328	1	IC DRVR TIL BUS DRVR QUAD 1-INP IC GATE TIL NOR QUAD 2-INP	0379D 0379D 0379D 0379D 0379D 0223G	AMBT26 AMBT26 AMBT26 AMBT26 7402PC
425021 425022	1820-1112 1820-1112		IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG	0169H 0169H	SN74LS74N SN74LS74N
A20			NOT ASSIGNED		
427			NOT ASSIGNED		
A28			NUT ASSIGNED		
429			NOT ASSIGNED		
430			NOT ASSIGNED		
431			NOT ASSIGNED		
432			NOT ASSIGNED		
A 3 5			NUT ASSIGNED		
A34			NOT ASSIGNED		
435	04262-66535 04262-26535	1	BCD OUTPUT CONTROL BOARD ASSEMBLY PC BOARD, BLANK	28480 28480	04262-66535 04262-26535
435C1 435C2 435C3 435C4 435C5	0160-2199 0160-2199 0160-1229 0160-3451 0160-3451		CAPACITOR=FXD 30PF +=5% 300VDC CAPACITOR=FXD 30PF +=5% 300VDC CAPACITOR=FXD 33UF+=10% 100VDC TA CAPACITOR=FXD ,01UF +80=20% 100VDC CEH CAPACITOR=FXD ,01UF +80=20% 100VDC CEH	28480 28480 0420J 28480 28480	01+0-2199 01+0-2199 150033+x901082 01+0-3451 01+0-3451
435C6 435C7 435C7	0160-3451 0160-3451 0160-3451		CAPACITUR-FXD .01UF +80-20% 100VDC CEH CAPACITOR-FXD .01UF +80-20% 100VDC CEH CAPACITOR-FXD .01UF +80-20% 100VDC CEH	28480 28480 28480	0160-3451 0160-3451 0160-3451
435CR1 435CR2	1902-0041 1902-0041		DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC=.009%	0203G 0203G	92 10939-98 92 10939-98
435 J.1	1200-0438		SOCKET-IC 16-CONT DIP-SLOR	0138J	583529-1
435L1	9100-1611	1	CD1L+MLD 220NH 20% 0=50 .155D%.375LG	0217B	15-4415-2M
435R1 435R2 435R3 435R4 435R5	0683-5625 0683-5625 0683-5625 0683-5625 0683-5625		RESISTON 5.6K 51 .25W FC TC==400/+700 RESISTON 5.6K 51 .25M FC TC==400/+700 RESISTOR 5.6K 51 .25M FC TC==400/+700 RESISTOR 5.6K 51 .25M FC TC==400/+700 RESISTOR 5.6K 51 .25M FC TC==400/+700	0160G 0160G 0160G 0160G 0160G	C85625 C85625 C85625 C85625 C85625
435R6 435R7 435R8 435R9 435R9 435P 1 0	0683=5625 0683=5625 0683=2225 0683=2225 0683=5625		RESISTOR 5.6K 51 .25W FC TC==400/+700 RESISTOR 5.6K 51 .25W FC TC==400/+700 RESISTOR 2.2K 51 .25W FC TC==400/+700 RESISTOR 2.2K 51 .25W FC TC==400/+700 RESISTOR 5.6K 51 .25W FC TC==400/+700	0160G 0160G 0160G 0160G 0160G	C85625 C85625 C82225 C82225 C85225 C55625
435R11 435R12	0683-5625 1810-0136		PESISTOR 5.6K St .25W FC TC=-400/+700 Network-Res 10+PIN-S1P ,1+PIN-SPCG	0160G 28480	C#5625 1810=0136
43551	3101-0299		SWITCH, SLIDE 4-8PST	28480	3101-0299
435U1 435U2 435U3 435Ua 435 U 5	1820-1923 1820-0077 1820-1197 1820-0294 1820-0294	1 1 8	IC MY TIL LS MONOSTBL RETRIG DUAL IC FF TIL D-TYPE POS-EDGE-TRIG CLEAR IC GATE TTL LS NAND QUAD 2-INP IC BMF-RGTR TTL R-S SEMIAL-IN PHL OUT IC SMF-RGTR TTL R-S SEMIAL-IN PHL OUT	0169H 0223G 0169H 0340F 0340F	9N74L8123N 7474PC 9N74L500N DM6570N DM6570N

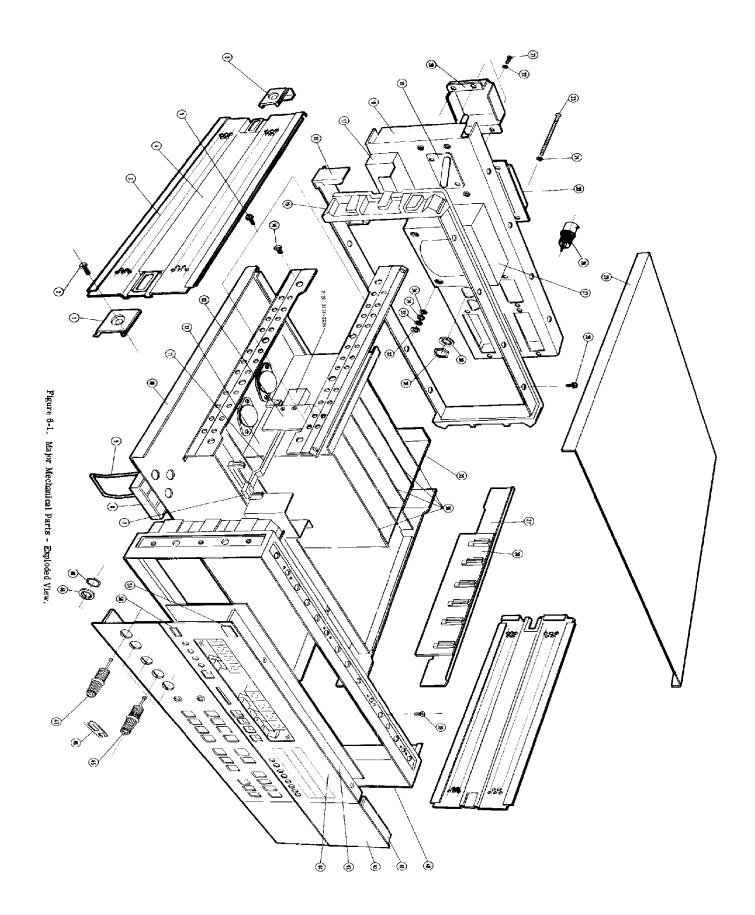
Table 6-3. Replaceable Parts (Cont'd).

- -

Table 6-3	Replaceable	Parts	(Cont'd).
Table 0-5.	Mehlaccapie	Terrow	(0

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
435116' 43507, 43508 43509- 435010 4350110 4350112 435012 435013	1820-0294 1820-0294 1820-066M 1820-066M 1820-0294 1820-0294 1820-0294 1820-0294		IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC SHF TTL NON-INV HLX 1-INP IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC DRVR TTL HUS DRVR OUAD 1-INP IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT CABLE ASSEMBLY	0340F 0340F 0223G 0340F 0340F 0340F 0340F 0340F 28480 28480	UM6570N DM6570N 7407PC DM6570N Am670N OM8570N DM8570N DM8570N 04261=72009 04261=72009
C1 C2 C3 CR1, CR2 CR3 CR4 ~ CR7 F1 J6, J7, J8 A3 Q1, Q2, Q3 R1 R2, R3 R4 S1 S2 - S5 W1	04261-72009 0160-4259 0160-1586 0160-1586 1901-0496 1902-1232 1901-0033 2110-0007 2110-0202 5060-4020 04262-66503 0380-0644 2190-0034 1854-0063 0683-1025 0698-3391 2100-1250 2100-1250 2100-1250 2100-1250 2100-1250 2100-1250 2100-1201 8120-0360 04262-61601 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61603 04262-61001 04262-61001 04262-61001 8710-0340 8710-0340	1 2 1 4 1 1 2 2 3 2 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHASSIS MOUNTED COMPONENTS CAPACITOR FXD .10F 200VDC CAPACITOR FXD .10F 200VDC DIODE: RECTIFIER POWER DIODE : ZNR IN3997AR 5.6V PD = 10W DIODE & 180200mA FUSE 1A 250V FUSE .5A 250V CONNECTOR ASSEMBLY,50 CONTACTS (OPT. 001/004) CONNECTOR BOARD ASSEMBLY, HP-1B (OPT. 101) SCREW, STAND OFF WASHER SP WASHER SP TRANSISTOR NPN 2N3055 RESISTOR 21.5 1% .5W RESISTOR 21.5 1% .5W RESISTOR 21.5 1% .5W RESISTOR 21.5 1% .5W RESISTOR VAR 500 103 SWITCH:LIME SWITCH:LIME SWITCH:LIME SWITCH:LIME SWITCH:LIME CABLE ASSEMBLY, LC, 19CM CABLE ASSEMBLY, HC, 16CM CABLE ASSEMBLY, HC, 16CM CABLE ASSEMBLY, HD, 19CM CABLE ASSEMBLY, HD, 22CM CABLE ASSEMBLY, LINE SWITCH MISCELLANEOUS TRIM, SIDE TRIM, SIDE		

F


Section VI

Ì

6-21

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
CHASSIS PARTS					
1 2 3 4 5	5040-7219 2680-0172 5060-9935 5060-9802 2360-0115	2 4 2 2 6	CAP HANDLE FRONT SCREW-MACH 10-32 .375-IN-LG COVER. SIDE HANDLE SREW-MACH 6-32 .312-IN-LG		
6 7 8 9 10	5040-7220 0370-2159 5040-7201 1460-1345 5060-9845	2 1 4 2 1	CAP HANDLE REAR KNOB:PUSHBUTTON LINE FOOT, FULL/HALF MODULE STAND TILT COVER, BOTTOM		
11 12 13 14 15	5040-7023 04262-00602 04262-00606 2510-0192 5020-8804	1 1 16 1	ROD, PUSHBUTTON DECK, LEFT PLATE, LINE SWITCH SCREW-MACH 8-32 .25-IN-LG FRAME, REAR		
16 17 18 19 20	5040-3318 0960-0443 04262-00205 1200-0041 0340-0833	1 1 3 1	COVER, L MODULE LINE MODULE PANEL, REAR SOCKET, TRANSISTOR COVER, TRANSISTOR		
21 22 23 24 25	2200-0141 2190-0205 2510-0135 3050-0139 7100-0129	4 4 8 1	SCREW-MACH 4-40 .312-IN-LG WASHER FL SCREW-MACH 8-32 2.25-IN-LG WASHER FL MTLC NO8 COVER, POWER TRANSFORMER		
26(J9, J10) 27 28 29 30	1250-0118 9100-0865 2360-0113 5060-9833 2190-0016	2 1 8 1 3	CONNECTOR, BNC TRANSFORMER, POWER SCREW-MACH 6-32 .25-IN-LG COVER, TOP WASHER-LK INTL T NO3/8		
31 32 33 34 35	2950-0001 2580-0004 2190-0087 3050-0239 04262-00603	2 4 4 1	NUT-HEX-DBL-CHAM 3/8-32-THD NUT-HEX-OBL-CHAM 8-32-THD WASHER-LK HLCL NO8 WASHER-FL NM NO8 DECK, CENTER		
36 37 38 39 40	04262-00605 5020-8835 04262-00604 2360-0333 5020-8803	5 4 1 1	PLATE, SHIELD STRUT CORNER DECK, RIGHT SCREW-MACH 6-32 .25-IN-LG FRAME, FRONT		
41 41 42 42 43	04262-00204 04262-00214 04262-00202 04262-00212 04262-00212 04262-00203	1 1 1 1	SUB PANEL, FRONT (STD) SUB PANEL, FRONT (OPT. 004) PANEL, FRONT (STD) PANEL, FRONT (OPT. 004) SUB PANEL, FRONT		
44 44 45 (J2 - J5) 46 47 (J1)	04262-00201 04262-00211 1510-0090 5000-4206 1510-0107	1 1 4 2 1	PANEL, FRONT (HP) PANEL, FRONT (YHP) BINDING POST GRAY SHORTING LINK BINDING POST BLK		
48 49 50 51 51	2190-0016 2950-0043 0370-0451 7120-1254 7120-0478	2 5 1 1	WASHER-LK INTL T NO3/8 NUT-HEX-DBL-CHAM 3/8-32-THD BEZEL, PUSHBUTTON LINE TRADE MARK (HP) TRADE MARK (YHP)		
52 53 54 55 56	04262-00607 2360-0115 0520-0129 04262-00608 2420-0006	1 2 6 3 2	PLATE, BLIND SCREW-MACH 6-32 .312-IN-LG SCREW-MACH 2-56 .312-IN-LG PLATE, BLIND NUT-HEX-W/LKWR 6-32-THD		
57 58 59 60 61	0624-0045 2190-0008 0340-0458 1200-0080 3050-0226	6 6 3 4 2	SCREW-TPG 6-20 .375-IN-LG WASER-LK EXT T NO6 INSULATOR, TRANSISTOR INSULATOR, DIODE WASHER-FL MTLC NO10		
62 63 64 65 66 67	0360-0270 2740-0003 04262-01201 1490-0848 0590-0061 2190-0060	3 3 1 1 1 1	SOLDER LUG NUT-HEX-W/LKWR 10-32-THD PLATE, ANGLE BUSHING NUT-HEX-DBL-CHAM 1/4-32-THD WASHER-LK INTL T NO1/4		

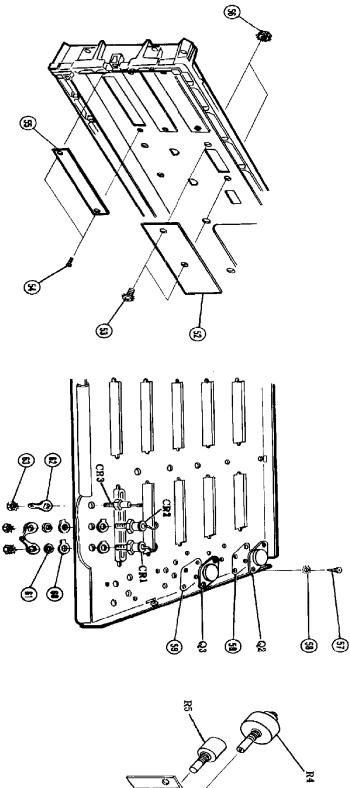
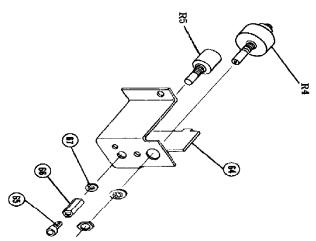



Figure 6-2. Mechanical Parts - Exploded View.

Section VII Paragraphs 7-1 to 7-5

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION.

7-2. This section contains information for adapting this manual to instruments to which the contents do not directly apply. The following paragraphs explain how to adapt this manual to apply to older instruments with a lower serial prefix.

7-3. MANUAL CHANGES.

7-4. To adapt this manual to your particular instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the summary by assembly.

7-5. If your instrument serial number is not isted on the title page of this manual or in Table 7-1 to the right, it may be documented in a rellow MANUAL CHANGES supplement. For idditional information about serial number soverage, refer to INSTRUMENT COVERED BY MANUAL in Section I.

Table 7-1. Manual Char	Table 7-1. Manual Changes by Serial Number.					
Serial Prefix or Number	Make Manual Changes					
1710J00260 and below	А, В					
1710J00340 and below	В					

Table 7-2.	Summary of	Changes by	Assembly	(Continued	on Page 7-2).

C HANGE				Assen	ıbly			
CHANGE	A1	A2	A3	A4	A5	A9	A11	A12
						:		

7-1

Section VII Table 7-2


Table 7-2.	Summary	of	Changes b	У	Assembly	(Cont	inued).
------------	---------	----	-----------	---	----------	-------	---------

					Assembl	у			
CHANGE	A13	A14	A21	A22	A23	A24	A25	A35	No Prefix
· A				R9-R16 U1 Q1-Q8 R1-R8 R23-R30					
В					04261 - 66523 04262- 66623				

CHANGE A

Pages 6-16 and 6-17, Table 6-3, Replaceable Parts, Change A22 board parts list to Table A.

Page 8-61, Figure 8-46, A22 schematic diagram, Partially change Figure 8-46 as shown in Figure A.

Figure A.

CHANGE B

Page 6-18, Table 6-3, Replaceable Parts, Change A23 board parts list to Table B.

Page 8-63, Figure 8-47, A23 Component Locations, Change Figure 8-47 to Figure B.

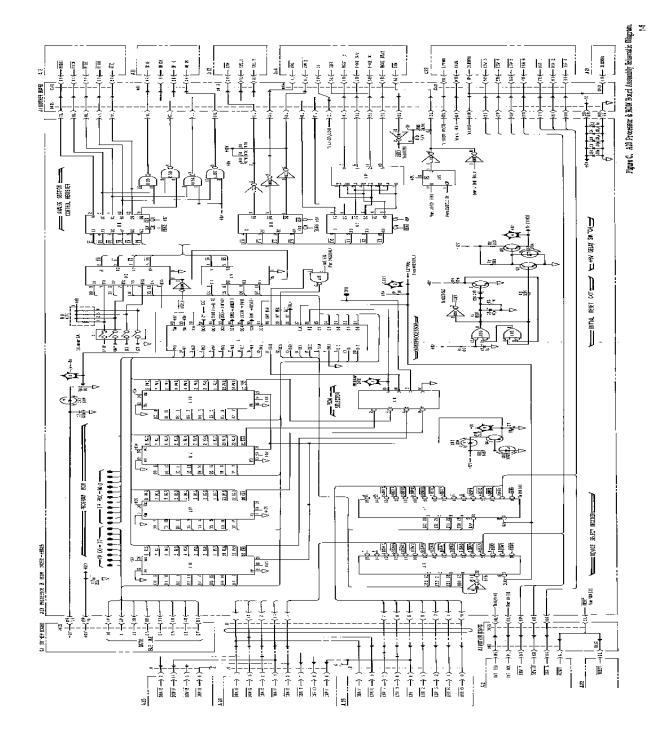
Page 8-63, Figure 8-48, A23 schematic diagram, Change Figure 8-48 to Figure C.

Section VII

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
422 4	04262+66522	2	DISPLAY CUNTROL & RAM BOARD ASSEMBLY PC HUARD, BLANK	28480 28480	04262+6522 04262+26522
A22C1 A22C2 A22C3 A22C4 A22C5	0180-0291 0160-3451 0160-3451 0160-3451 0160-3451 0160-3451		CAPACITOR=FX0 10F+=102 35VDC TA CAPACITOR=FX0 .01UF +80=20X 100VDC CER CAPACITOR=FX0 .01UF +80=20X 100VDC CER CAPACITUR=FX0 .01UF +80=20X 100VDC CEH CAPACITUR=FX0 .01UF +80=20X 100VDC CEH	0420J 28480 28480 28480 28480	150D105x9035A2 0160-3451 0160-3451 0160-3451 0160-3451
422C6 422C7 422C8 422C9 422C9 422C10	0160-2204 0160-2261 0160-0939 0180-0291 0160-0939	6	CAPACITUR-FXD 100PF +-5% 300VDC MICA0+70 CAPACITUR-FXD 15PF +-5% 300VDC CER0+-30 CAPACITUR-FXD 430PF +-5% 300VDC MICA0+70 CAPACITOR-FXD 10F+-10% 35VDC TA CAPACITOR-FXD 430PF +-5% 300VDC MICA0+70	28480 28480 28480 0420J 28480	0160+2204 0160+2261 0160-0939 1500105×0035A2 0160-0939
422C11 422C12	0160-0939 0160-2205	2	CAPACITUR-FXD 430PF +-5% 300VDC MICA0+70 CAPACITUR-F%D 120PF +-5% 300VDC MICA0+70	28480 28480	0160-0939 0160-2205
422681	1902-0041		DIGOE-ZNR 5.11V 5% 00-7 PD#.44 TC=.009%	0203G	87 10939-98
1555A	1200-0468	1	SUCKET-IC 24+CONT DIP-SLDR	0024E	4=23=20234
42201 42202 42203 42204 42204 42205	1 853-0107 1 853-0107 1 853-0107 1 853-0107 1 853-0107 1 853-0107	A	TRANSISTOR, PNP SI TRANSISTOR, PNP SI TRANSISTOR, PNP SI TRANSISTOR, PNP SI TRANSISTOR, PNP SI	28480 28480 28480 28480 28480 28480	1853-0107 1853-0107 1853-0107 1853-0107 1853-0107
A2206 A2208	1853+0107 1853-0107 1853+0107		TRANSISTOR, PNP SI TRANSISTOR, PNP SI TRANSISTOR, PNP SI	28480 28480 28480	1853-0107 1853-0107 1855-0107
&2241 &2242 .&2243 &2244 &2245	0683-2135 0683-2735 0683-2735 0683-2735 0683-2735 0683-2735	8	RESISTUR 27K 5% 25W FC TC#-400/+F00 RESISTOR 27K 5% 25W FC TC#-400/+F00	0160G 0160G 0160G 0160G 0160G	CH2735 CH2735 CH2735 CH2735 CH2735 CH2735
47286 42287 42284 42289 42289 422810	0643-2735 0643-2735 0643-2735 0643-2735 0643-5605 0683-5605		RESISTOR 27% 5% .25% FC TC=-400/+R00 RESISTOR 27% 5% .25% FC TC=-400/+R00 RESISTOR 27% 5% .25% FC TC=-400/+800 RESISTOR 56 5% .25% FC TC=-400/+500 RESISTOR 56 5% .25% FC TC=-400/+500	0160G 0160G 0160G 0160G 0160G	C 827 55 C 827 55 C 827 35 C 85805 C 85805
422411 422812 422813 422814 422814 422815	0683-5605 0683-5605 0683-5605 0683-5605 0683-5605 0683-5605		RESISTOR 56 5% .25W FC TC==400/+500 RESISTOR 56 5% .25W FC TC==400/+500	0160G 0160G 0160G 0160G 0160G	C85605 C85605 C45605 C45605 C85605 C85605
A22R16 A22R17 A22R18 A22H19 A22R20	0683+5605 0683-2725 0683-1825 0683+4725 1810-0121		HESISTOR 56 5% .25% FC TC==400/+500 RESISTOR 2.7% 5% .25% FC TC==400/+700 RESISTOR 1.8% 5% .25% FC TC==400/+700 RESISTOR 4.7% 5% .25% FC TC==400/+700 NtTwoRK=RES 9=PIN=SIP .15=PIN=SPC6	0160G 0160G 0160G 0160G 28480	C85605 C82725 C81825 C84725 1810-0121
A22R21 A22R22 A22R39	1810+0205 1810-0206 1810-0164	ş	NETWORK+RES 8-PIN-SIP _1=PIN-SPCG NETWORK+RES 8-PIN-SIP _1=PIN+SPCG NETWORK=RES 9-PIN-SIP _15-PIN+SPCG	0248C 0374D 28480	750-81-84,7K 4308k-101-1035 1810-0164
42251	3101-0299		SWITCH, SLIDE 4-SPST	28480	3101-0299
422V1 422V2 422V3 422V4 422V5	1820-1245 1820-1194 1820-1199 1820-1201 1820-1888		IC UCDR TIL LS 2+TO-4+LINE DUAL 2-INP IC CNTH TIL LS HIN UP/DOWN SYNCHHO IC INV TIL LS HEX 1+INP IC GATE TIL LS AND QUAD 2+INP IC GCDR TIL HCD-TO+7+SEG	0169H 0379D 0169H 0169H 0169H	5N74L5155N AM74L5193PL SN74L504N SN74L508N SN74L5207N
422116 422U7 422U9 422119 422110	1820-0567 1820-1490 1858-0033 1820-0628 1820-1470	2	IC MY TTL DUAL IC CNTR TTL LS DECD ASYNCHRO TRANSISTOR FT5712M IC SN7489N 64-BIT RAM TTL IC MUXR/DATA-SEL TTL LS 2-TD-1-LINE GUAD	02036 0169H 28480 0340F 03790	MC 40244 SN 74L 590N DM 74K9N SN 74L 5157N
A22U11 A22U12 A22U13 A22U14 A22U15	1820-1425 1820-1112 1820-1197 1820-1490 1820-1478		IC SCHMITT=TRIG TTL LS NAND QUAD 2=INP IC FF TTL LS D=TYPE POS=LOGE=TRIG IC GATE TTL LS NAND QUAD 2=INP IC CHTR TTL LS NAND QUAD 2=INP IC CHTP TTL LS BIN ASYNCHRO	0169H 0169H 0169H 0169H 0169H	SM74LS132N SM74LS74H SM74LS00N SM74LS90N SM74LS43N
422116 422017 422018 422019 422019 422020	1858-0033 1820-0628 1820-1470 1820-1470 1820-1081		TRANSISTOR FT5712M IC SN7009N 60-811 RAM TTL IC MUXP/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC ORVR TTL BUS ORVR QUAD 1-INP IC DRVR TTL BUS ORVR QUAD 1-INP	28480 0340F 03790 03790 03790	0M7489N SN746 51571; AM5T26 AM5T26
422U21 422U22	1820+1196 1818+0155	4	IC FF TTL LS D+TYPE POS+EDGE+TPIG COM IC MC 6810L+1 ik RAM NMUS	05790	4M74LS174N MC6810L+1
A55A1	0410-0209	z	CRYSTAL, QUARTZ	28460	0410+0209

See introduction to this section for ordering information

Model 4262A


1

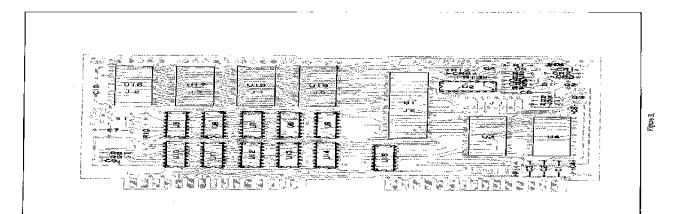

Section VII

Table B.

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Reference Designation A23 A23C1 A23C3 A23C3 A23C3 A23C4 A23C5 A23C6 A23C7 A23C6 A23C7 A23D1 A23D1 A23D1			PROCESSOR & ROM BOARD ASSEMBLY PC HOARD, BLANK CAPACITOR-FXD 1UF++10X 35VDC TA CAPACITOR-FXD 2.2UF++10X 20VDC TA CAPACITOR-FXD 2.2UF++10X 20VDC TA CAPACITOR-FXD 0.2UF++10X 35VDC TA CAPACITOR-FXD 0.1UF++10X 35VDC TA CAPACITOR-FXD 0.1UF++10X 10VDC TA CAPACITOR-FXD 0.1UF++10X 100VDC CER DIODE_ZNR 0.41V 5X DD-7 PD=.4W TC=+.043X DIODE-ZNR 0.41V 5X DD-7 PD=.4W TC=+.043X DIODE-ZNR 0.41V 5X DD-7 PD=.4W TC=+.043X DIODE-ZNR 0.41V 5X DD-7 PD=.4W TC=+.047X SOCKET-IC 16-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOCKET-IC 40-CONT DIP-SLDR RESISTOR NPN SI PD=300MM FT=200/H700 RESISTOR NPN SI PD=300MM FT=200/H700 RESISTOR NPN SI PD=300MM FT=200/H700 RESISTOR 10K 5X .25W FC TC==400/+700 RESISTOR 10K 5X .25W FC TC==400/+700 RESISTOR 4.7K 5X .25W FC TC==400/+700 RE	Code 28480 28480 0420J 0420J 28480 0420J 28480 0420J 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	04262-66523 $04262-66523$ $150105x9035A2$ $1500225x9020A2$ $0160-3451$ $1500105x9035A2$ $150035A901062$ $0160-3451$ $0160-3451$ $0160-3451$ $0160-3451$ $1200-05451$ $1200-0658$ $1200-0608$ $1854-0071$ $SP5 3611$ $2N2222A$ $2N2904A$ $CB1035$ $CB1035$ $CB1035$ $CB1035$ $CB1035$ $CB1055$
			is the duration to this section for ordering info		

See introduction to this section for ordering information

Serlicc VII Digute C

Model 4262.4

SECTION VIII SERVICE

8-1. INTRODUCTION.

8-2. This manual section provides the information and instructions required for servicing the HP Model 4262A LCR Meter. Included are Theory of Operation and Troubleshooting Guide with Circuit Schematics. The Theory of Operation describes fundamental principles and circuit operating theory of the 4262A with block diagrams. Circuit schematics, locator illustrations, troubleshooting guide, circuit analysis and other technical data necessary for repairs are integrated into the service sheet foldouts. An illustration of the instrument interior is shown in Figure 8-21.

Note

When the instrument circuitry includes expanded capabilities provided by optional equipment, refer to paragraphs entitled OPTIONS for specific option service information.

WARNING

TROUBLESHOOTING AND RE-PAIR ARE ALLOWED FOR QUALIFIED TECHNICAL PER-SONNEL ONLY. IF YOUR IN-STRUMENT FAILS, REFER IN-STRUMENT TO SERVICE PER-SONNEL. H-P SERVICE OFFICES OFFER YOU THE BEST ANSWER TO YOUR PROBLEM. A GUIDE TO YOUR LOCAL H-P SERVICE OFFICES MAY BE FOUND ON THE BACK COVER OF THIS MANUAL.

8-3. THEORY OF OPERATION.

8-4. This theory of operation has been organized into three sections: basic theory, a block diagram discussion, and circuit analysis. The basic theory, beginning with paragraph 8-11, explains the concepts and fundamental theory of the 4262A instrument technique adapted for accurately measuring the DUT and for fully achieving automated measurement performance. The block diagram discussion describes the overall circuit operating theory of the 4262A with block-to-block signal flow. Included are block and timing diagrams. The circuit analysis provides a detailed description of how the circuit on each board functions. For reference convenience, when servicing the instrument, a circuit description is included in the service sheets.

8-5. TROUBLESHOOTING.

8-6. This troubleshooting guide provides instructions and information for locating a faulty circuit instrument component that requires service, All instructions consider the safety of service personnel who will perform the procedures. These diagnostic guides are in the form of step-by-step procedures with flow diagrams. The board level troubleshooting diagrams are the procedures for isolating the problem to an individual malfunctioning circuit board assembly. The guides for locating a defective component are given on the individual board service sheets and integrate service test point locations, waveform support data: illustrations, voltage data, timing digrams, and other technical information in addition to providing schematic diagrams for each board. To facilitate easy troubleshooting of the 4262A digital section, the troubleshooting guide for the logic circuit employs a signature analysis technique incorporating the concept of data stream analysis. A guideline to signature analysis is provided in Figure 8-12.

8-7. RECOMMENDED TEST EQUIPMENT.

8-8. The test equipment required to perform operations outlined in this section is listed in Table 1-4 (Section I). The table includes: type of instrument required, critical specifications, use, and recommended model. If the recommended model is not available, equipment which meets or exceeds critical specifications listed may be substituted.

8-9. REPAIR.

8-10. Repair explanations tell how to replace defective circuit components. The recommended replacement procedures for components and parts which require special repair, replacement tools, or test equipment should be observed. Correct disassembly and the exchange procedures for such special parts are outlined in Paragraphs 8-46 through 8-52. To prevent damage from improper repair procedure, refer to the appropriate manual section before proceeding with repair. Section VIII Paragraphs 8-11 to 8-14

8-11. BASIC THEORY.

8-12. Figure 8-1 is the basic block diagram of the 4262A showing mainly the analog measurement section. It illustrates how the 4262A measures inductance L, capacitance C, resistance R and/or dissipation factor D. In this figure, the dotted lines denote the directions of control signals to and from the nanoprocessor centered control circuit.

A measuring test signal from the oscillator is applied (at level E1) through the source resistor to both the unknown device and the range resistor Rr. Amplifier Rr causes the same current that flows through the unknown device to flow through Rr and operates as a current to voltage converter. The effect of the Rr amplifier is to produce a voltage (E2) equal in phase to and exactly proportional to the current that flows through the unknown device. This amplifier drives the junction of the unknown device and Rr to zero volts (virtual ground); thus Rr does not affect the unknown device current. The voltage E2 represents the vector current which flows through unknown device at test signal level E1. E1 and E2 completely define the electrical characteristics of the DUT (Device Under Test) at a given test level and frequency. The details of how the measured values are derived from the ratio of E1 and E2 are discussed in Paragraph 8-16.

8-13. Voltages E1 and E2, across the unknown device and Rr, respectively, are connected to selector switches S1 and S2. These switches have two

important functions: first, S1 selects either E1 or E2 as the voltage to drive the four phase generator [this also establishes the measurement mode-either series or parallel which is automatically or manually set (PARA or SER - as selected at the front panel)] and, secondly, S2 selects either E1 or E2 as the measurement voltage to charge or discharge the integrator (as appropriate to the measurement function and mode - i. e. Cp, Cs, Lp, Ls, Rp or Rs) in the Vector Voltage-Ratio Measurement Section.

The Vector Voltage-Ratio Measurement Section calculates the measured value for L, C, R or D by ascertaining the voltage ratio between E1 and E2 through a dual-slope (type) analog to digital conversion technique. (This technique is popularly used in digital voltmeters). The section also processes the E1 and E2 signal flow to make the desired measurement. Selection of either an L, C, R or D measurement and an appropriate equivalent measuring circuit is established by setting detector phase reference and by S1 and S2 switch operation timing. The analog section receives its measurement instructions from the digital section. A detailed operating description of the Vector Voltage-Ratio Measurement Section is given in Paragraph 8-15.

8-14. Appropriate values for the source and range resistors, Ro and Rr, are selected with respect to the impedance of unknown device. In a series equivalent circuit measurement (Ls, Cs or Rs), the

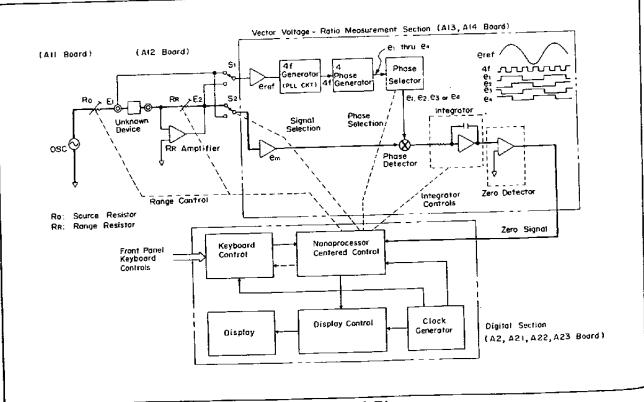


Figure 8-1. Basic Block Diagram.

impedance of the unknown is usually low and Ro is set to a value much greater than the impedance of the unknown device to achieve a constant current drive. On the other hand, for a parallel equivalent circuit measurement (Lp, Cp or Rp), the impedance of the unknown device is usually high so Ro is set to a much smaller value than the impedance of the unknown. Thus, a constant voltage drive is realized. The resistance values for Ro and Rr are always equal.

8-15. Here is a brief discussion of Vector Voltage-Ratio Measurement Section operation. The em signal selected by S2 (from either E1 or E2) is detected by a phase detector that outputs the rectangular component or in-phase component to an integrator. Phase detector drive signals **e1** through **e**4 are produced in the following manner: a 4f signal is generated from an **e**ref signal (at a frequency of f) as selected by switch S1. This creates signals e1 through e4, each being different by 90 degrees in phase from one another (a 4 phase generator). As a PLL (Phase Lock Loop) circuit is used for generating the reference phase signal to minimize measurement error, the phase of signals E1 through E4 is very accurate. One of these signals, as directed by the digital circuitry, detects the em measurement signal. Phase detector output is a vector component signal representing the capacitive, reactive, or other characteristic of unknown to be measured.

8-16. This paragraph discusses the parallel capacitance Cp measurement principle. To simplify the explanation, the example used here is that of measuring an ideal capacitor. See Figure 8-2, Cp Measurement. During time T1, Switch S2 selects E2 and the integrator is charged by that portion of the E2 sinusoidal waveform which is synchronously phase detected by the e2 pulse train. Both S1 and S2 switches select the E1 signal that is fed to discharge the integrator after being phase-detected by the e1signal. Since time period T2, for the integrator to discharge to zero volts, is proportional to the value of Cx, Cx can be directly obtained from the contents of a counter if the values for Rr and T1 are properly and accurately set. A zero detector signals the digital section to establish a counted number corresponding to Cx each time the integrator output crosses the zero level. Other measurements are done similar to the Cp measurement.

8-17. The analog section of the 4262A is controlled by nanoprocessor centered control which manages the various sequences required to perform the desired measurements. Range control, selection of measurement mode, and timing of the A-D conversion processes are governed by the nanoprocessor. The nanoprocessor also acts as a computing device and calculates deviation \triangle LCR and the quality factor of sample (mathematical operation) as well as counting the L, C, R and D values converted into time periods.

8-18. The functions set by pushing front panel pushbuttons are inputted to the nanoprocessor through the keyboard control. The keyboard switches are assigned individual addresses for discrimination. When a panel control pushbutton is depressed, the keyboard control identifies the address of switch and causes the nanoprocessor to treat the "interruption" of the function it recognizes by the address code. The nanoprocessor gives priority to specific pushbutton functions so as to be able to restrict improper control settings. Keyboard operation is monitored by and in-part managed by nanoprocessor programming. This is partly to assist the operator and partly to prevent misoperation.

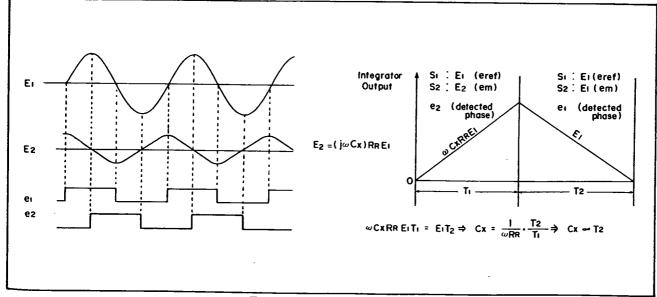


Figure 8-2. Cp Measurement.

Section VIII

PRINCIPLES OF OPERATION

The following outlines 4262A measurement principles using some equations to aid and acquaint you with the basic concepts of the unit. To simplify explanation in general, only the principles for C-D (capacitance and dissipation factor) measurements are discussed here. The measurement principles for other impedance paramters can be deduced by a similar course of reasoning.

In Cp - D measurements, since a constant test voltage is applied to the unknown, the DUT generally presents a high impedance to the test signal. The following equation shows the relationship beteen voltage E1 at the "H" terminal (voltage across the DUT) and range resistor amplifier output voltage E2 (voltage across range resistor):

 $-E2 = (Gp + j\omega Cp) \operatorname{Rr} \cdot E1 \dots eq. 8-1$

where, Gp is parallel conductance Cp is unknown capacitance Rr is value of range resistor ω is angular frequency of test signal

The phase detector separately extracts the real and the imaginary voltage components of E2 (represented by formulas GpRrE1 and $j\omega$ CpRrE1, respectively). Figure A is a vector diagram of phase detector output voltage.

During the charging cycle T1, the phase detector detects the 90 degree phase component of the E2 signal. Thus, the integrator output voltage becomes:

 $k1\omega$ CpRrE1T1 eq. 8-2

where, k1 is a constant value determined by 4262A circuitry.

Following the E2 signal, the E1 signal is applied to the phase detector and the discharge cycle begins. The phase detector detects a signal whose magnitude is E1/10 (that is, the E1 signal is attenuated to 1/10 to develop the appropriate time T2 for discharging the integrator) by phase detection of the signal in phase with E1. The resulting change in integrator output voltage developed by the E1/10 signal is:

 $-k1 \frac{E1}{10} T2 \dots eq. 8-3$

The integrator output eventually reaches zero volts (as a result of the charge and discharge cycle). Thus, the sum of the voltages given in equations 8-2 and 8-3 is zero. And,

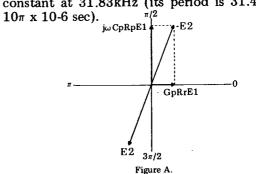
$$k\omega CpRrE1T1 = k1 - \frac{E1}{10} T2 \dots eq. 8-4$$

Cp is derived from equation 8-4 as follows:

$$Cp = \frac{T2}{10\omega RrT1} \dots eq. 8-5$$

$$(\omega = 2\pi fm)$$

To eliminate ω from equation 8-5, the 4262A establishes a constant charging time T1 as follows:


$$T1 = k2 \frac{1}{fm} \dots eq. 8-6$$

where k2 is a constant value (for each test signal frequency).

Equation 8-5 then becomes:

$$Cp = \frac{T2}{20k_2 \pi Rr} \dots eq. 8-7$$

This is how the measurement frequency is cancelled out of the equation for the measured capacitance value. The discharge period, T2, is measured by counting clock fc whose frequency is constant at 31.83kHz (its period is 31.4μ sec =

Thus, if n is the number of counts for fc, T2 can be expressed as follows:

 $T2 = n \cdot 10\pi \times 10^{-6}$ (seconds) eq. 8-8

And, if equation 8-8 is substituted in equation 8-7,

$$Cp = n \cdot \frac{10^{-6}}{2k^2 Rr} \dots eq. 8-9$$

(Sheet 1 of 2)

This equation means that discharge period T2 (number of counts for fc) is directly equal to the mantissa of a measured Cp value (note that $Rr = 10^{m}$; and m is an integer).

For example, if a 1200pF capacitor is measured at a measurement frequency of 1kHz, the 4262A automatically selects $10k\Omega$ as the Rr and constant k2 is 50. Therefore, equation 8-9 may be written as:

$$Cp = n \cdot \frac{10^{-6}}{2k 2Rr} = n \cdot \frac{10^{-6}}{2 \times 50 \times 10 \times 10^3} = n \cdot 10^{-12}$$

Consequently,

$$n = Cp \ge 10^{12} = (1200 \ge 10^{-12}) \ge 10^{12} = 1200$$

The 4262A will display 1200 counts and the "pF" unit lamp will light.

In a D measurement cycle, the integrator is charged for period T3 by the E2 signal as detected by a detection phase in phase with E2. Integrator output voltage rises to k1GpRrE1T3. During the discharge cycle T4, the detection phase is different by 90 degrees as referred to E2. The discharge voltage becomes k1 ω CpRrE1T4. From these integrator voltage changes in the D measurement cycle, the following equation may be composed:

$$k1GpRrE1T3 = k1\omega CpRrE1T4 \dots eq. 8-10$$

Dissipation factor D is derived as follows:

$$D = \frac{Gp}{\omega Cp} = \frac{T4}{T3} \dots eq. 8-11$$

The period T3 is constant and is equal to $1000 \frac{1}{\text{fc}}$ (fc = 31.83kHz). If n stands for number of 1 counts for fc during period T4, T4 is equal to $n \cdot \frac{1}{\text{fc}}$ Thus, equation 8-11 may be converted to:

$$D = \frac{T4}{T3} = \frac{n \frac{1}{fc}}{1000 \frac{1}{fc}} = \frac{n}{1000}$$

Therefore, n = 1000D.

If D value for the unknown is 1.2, n will become 1200 which will be displayed at the front panel with the decimal point. Figure 8-3 shows the expanded forms of calculations for impedance parameters. As shown in Figure 8-3, two kinds of integrator waveforms exist. These two distinctive integrator operations may be examined with respect to Cp and Cs measurement modes. For a Cs - D measurement, a constant current drive is applied to the unknown. Voltage E2 is a constant value drop across Rr and E1 is a variable voltage produced by DUT. The following equation shows the relationship between voltages E1 and E2:

$$E1 = \left(\frac{Rs}{Rr} + \frac{1}{j\omega CsRr}\right) \cdot E2 \dots eq. 8-12$$

The reference phase for the phase detector is now taken from E2 signal. During charging cycle T1, the phase detector detects input voltage E1/10 by a detection phase in phase with E2. The integrator output voltage becomes:

$$k1 \cdot \frac{E2}{10} \cdot T1 \dots eq. 8-13$$

The integrator charges to a constant voltage regardless the value of the DUT. During integrator discharge cycle, the phase detector detects E1 signals with a detection signal that is different in phase by 90 degrees with respect to the E2 signal. The resulting integrator output voltage change is:

$$-k1 \cdot \frac{E2}{\omega CsRr} \cdot T2 \dots eq. 8-14$$

Therefore,

$k1 \frac{E2}{10} T1 = k1$	$\frac{E2}{\omega CsRr}$ T2	 eq. 8-15

Cs is derived from equation 8-15 as follows: 10 T2

$$C_{S} = \frac{10}{\omega Rr} \cdot \frac{12}{T1} \dots eq. 8-16$$

Substituting T1 in equation 8-6 produces: $C_{2} = \frac{10}{10}$ mp $c_{2} \approx 8.17$

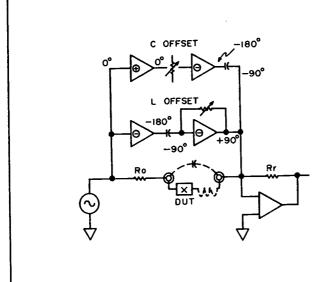
 $\mathbf{Cs} = \frac{10}{2\pi \mathbf{k}^2 \mathbf{Rr}} \mathbf{T}^2 \dots \mathbf{eq}. 8-17$

Since T2 is counted by a 31.83kHz (its period is $10\pi \ge 10^{-6}$ sec) clock, equation 8-17 is:

$$C_s = n \frac{100}{2k_2 Rr} \times 10^{-6} \dots eq. 8-18$$

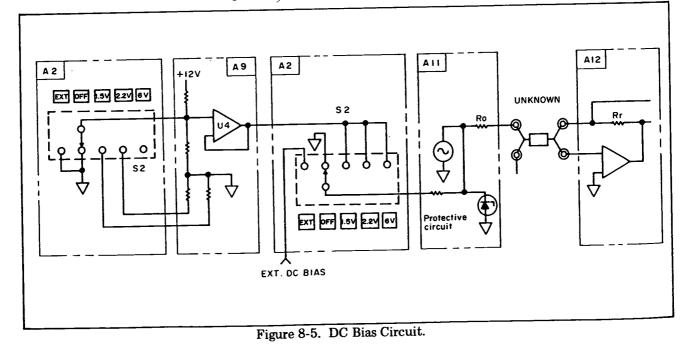
where, n is number of clock counts.

If 4262A measurement frequency is 1kHz, Rr is $1k\Omega$, and k2 is 5, equation 8-18 becomes:


$$C_s = n \frac{100}{2 \times 5 \times 10^3} \times 10^{-6} = 10n \times 10^{-9} (F)$$

When the capacitance of the unknown is 10μ F, the 4262A displays 10.00 counts and the μ F unit lamp lights.

(Sheet 2 of 2)


Section VIII Paragraphs 8-19 and 8-20

8-19. Display Control converts the measurement data signals from the nanoprocessor to display component signals which are so coded that corresponding numeric figures are displayed on the 7 segment LED displays. The measurement data is momentarily stored in a memory in this section and sent, in turn, to the matrix drive of each digit of the displays. The alphabetic PASS FAIL, U-CL, and O-F annunciations are illuminated directly on the display by annunciation signals coded by the nanoprocessor. This section also includes a clock generator which employs a crystal resonator to provide the digital section with accurate timing. 8-20. The nanoprocessor centered control and other digital sections are connected to a data bus line (8 bit) on which the measurement data and nanoprocessor I/O signals are transferred. This data bus line serves the overall digital section including the optional sections when the instrument is equipped with HP-IB Compatible (Option 101), BCD Data Output (Option 001), or Comparator (Option 004) option. The timing of the handshakes with system controller (such as a calculator), data transfer, and comparative data are also managed via the data bus line by the nanoprocessor. The operating principles of the option sections are discussed in the paragraphs entitled Options.

The influence of stray capacitance and residual inductance of the test jig can be offset from the current flowing through the range resistor Rr by establishing an opposition current flow through the junction of the unknown device and Rr. The C and L offset circuits develop, respectively, currents which are phase shifted by -90 and +90 degrees as referenced to the oscillator output. The changes in phase are reverse those of the effects of the capacitance and inductance of the test jig. When the offset currents are properly adjusted, the offset currents and the undesired component of the test jig measurement current cancel each other.

Figure 8-4, Offset Control Principle.

Section VIII Figure 8-3

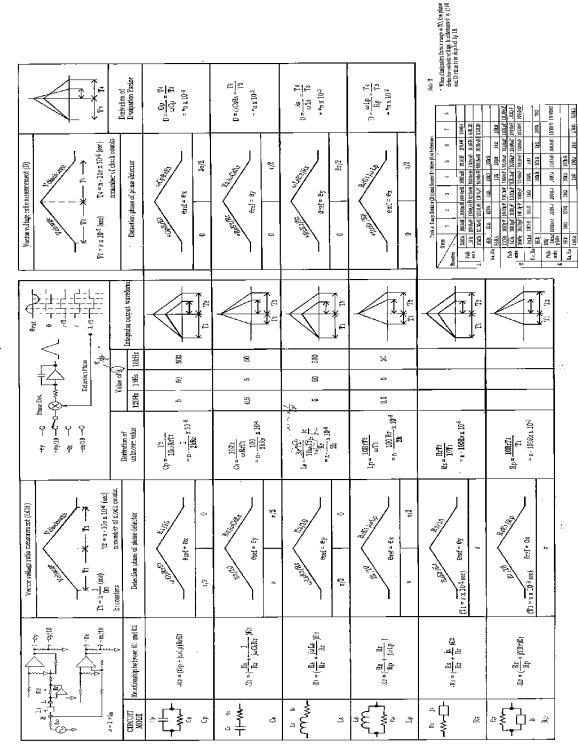


Figure 8-3. Measurement Principles.

놂

and the second s

Model 4262A

Percegraphs 8-21 to 3-27 Section VIII

Model 4262A

8-21. BLOCK DIAGRAM DISCUSSION.

to PRL selects the voltage across Cx as the eref

signal. When the CIRCUIT MODE is set to SER

outh mode is selected. Sotting the CIRCUIT MODE

In the AUTO measurement mode, the Bref signal

the voltage across Rr is selected as the Cref signal.

These paragraphs describe now each individual cir-8-22. Analog Section Discussion.

section. Figure 8-6 is a schematic block diagram of the 4262A analog section. The table in Figure 8-6 shows the range and source resistor values sclerted cuit section operates to establish L, C, R and D measurement values as controlled by the digital by range and function controls.

The ern signal is selected by FET switches A13Q2, Q3, Q5, and Q6 which are, in turn, controlled by signal selection signals from the digital section. The

selection is done automatically and applied in a manner similar to the above. The askered Berf signal is amplified by A13U.55 and is were-shiped by A13U5B and UT which also adjusts the pinase trigle of Berf by a control input (APAO algoal) from A14 Board. metrod of selecting the \mathbb{Cm} signal is graphically above in Figure 8-S Thrang Diggrams. The scientist form a provided by A13104A, UGB and \mathbb{Cm} signal is a modulified by A13104A, UGB and reconces an input signal for the phase bisector on A14 Bound. The switches A130(19 and Q16 hum on only when a CD measurement is being made and the TSES (SUAM) LOW LEVENED introvine in public. The cateflator signal from the SEC content of trans-former T2 is designed to have a low output imped-ance via source resistor Bo to the unit: may devise the power and bits reduces reduces the power anti-fiber from do bits reduces which can be oppli-ed to uniterov. Esc.e., The ALI Beerd infoldes an The test signal is generated by an armplitude stabi-lized Wien Fridge type oscillator. Oscillator output is fed through an afcenuator (ALIR18 and R19) to sation circuit. to compensate for residual induct-ance of test leads or fixture. The operating princi-ple of the L Offset Control is diagrammed in Fig-ure 8.4. a power amplifier. Attenuator switch A5Q3 turns . Offset Control circuit which provides a compen-8-23. A11 Oscillator and Source Resistor.

flow during integrator offset control period. Wren TEST SIGNAL LOW button is pushed and lights (this pushbutton functions in Cp measurement mode only), the gain of amplifiers AlBUEA and USB is increased. Thus, the voltage levels of Cef

and Gip signals remain the same as when making a

on and off respectively to interrupt the Cm signal

a ZERO signal whose time interval is sourcement to the desired measurement quantity. This ZERO signal is fed to A23 Board to be manipulated by measurement at the nominal (nigh) test signal lared. An SAT detector detects any Cr signal level that exceeds approximately ±5 volts and transfers such The A14 Board consists of three major circuit sec-tions: PLL Reference Phase Generator, Phase Dethe two input signals, Cref and Cm are to establish tector, and Integrator. The specific and functions of 8-27. A14 Phase Detector and Integrator. SAT signals to digital section. 8-24. The unknown connection is basically a four terminal (five terminals including GUARD terminal) +40 volts (+6V internally) can be applied to un-known device. The DC bias circuit is illustrated in connected directly to the instrument chassis. Circuit common for all PC boards is also eventually connected to the chassis. DC bias voltages up to configuration method. The GUARD terminal ligure 8-6.

selected in a manner peculiar to the measurecrant modes (four types). The selected reference phase signal is fed to the hase Dektore of the switch-est Ai4031, (220, and A23 of the Phase Db-tector. The method of selecting the reference phase The current that flows invoigh Cx also flows through range resistor flut. The range resistor ampli-fire causes the voltage access Rt to represent (ar-atty) the current flow through CX so and Rt ere acted by a trange control agend from the effect allected by a trange control agend from the effect section. The table in Figure 8.6 describes how the 3-25. A12 Range Resistor.

The Reference Phase Generator produces four re-forence phase signals each being different by 90 degrees in phase one from the other (these four signals are phase shifted respectively 0, $\tau/2$, π and

the nanoprocessor.

 $3\pi/2$ in radius vector as referred to the input signal

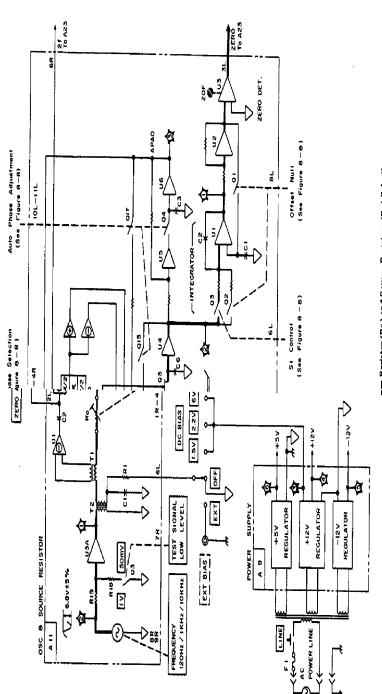
Gref.). The reference phase signals are individually

resistors are controlled. C Officet Control circuit is capable of compensating for stray capacitance up to 10pF (see Figure 8-4 for operating principle).

according to specific measurement rules and are used as Bref and Bm signizis. The Bref signal is chosen at the same time that the measurement cir-The very precise voltage across Cx and Rr are fed to differential amplificrs (A1301 chrough D4), C2 and C4 are do blocking capacitors. This assembly processes these signals to feed the Cref signal (reference phase signal used for phase detection) and the Em signal (signal measured by the integrator) to the A6 board. The two input signals are scleared 8-26, A13 Process Amplifier.

signal is illustrated in Figure 8-0 Timing Diagram,

Io establish the very accurate 90° phase difference the Reference Phase Generator employs a Phase


Locked Loop (PLL) circuit consisting of a local phase detector (PD), filter, and voltage controllad oscillator (VCO). Thus measurement error is minimized. An explanation of Reference Phase Genera-

tor operation is given on Service Sheet 14.

GEE INSIDE

Figure 8-3 Measurement Principles ÷

Section VIII Figure 8-6

nge Retistor (R.s.) and Source Resistors (R.o.) Selections.

UÇ

۲

φ

10.00H 10.00 HF 100kΩ 100Ω 100.0mH 10.00% 1000mH 100%0 100.0nF 1000 1040 ŵ 100 1000hF 100.0hF 10.00hF 1000mH 100.0mH 10.00mH 10000 100kg 10h 1040 10.0 1000 4 100.00F 10.00mH 100.0mH 100.001 1000pF IKD 1 k.G tkn 60 unknown device. The voltage compo<u>rtionant</u> em signal are detected. These compo<u>rtionant</u> 100.0pF vector voltage representing the imperious 10.00nF 10.00 Ω 1000pF 1000 1000 0 lished by the reference phase signal. C which represent the resistive, capacitid smoothing circuit which adopts the pi the input signals. The special combin to the Phase I the phase detector outputs are voltage pond to the phase angles (0, $\pi/2$, π or ing technique to accelerate transient technique is to speed measurements a test frequency. An explanation of the aging technique is given on Service She tive characteristics of the unknown is converted phase detector output The input signal **e**m

10.00mF 1000µF 100.0µF

100.0µF

10.00 PM

100001

1040

110

10.00H

10.00H 1000mH

10.00H

100 OH

10.00MG

1000kn

100.0hd

1000

1 kΩ

100142

10kΩ

1 40

Figure 8-6. Analog Section Block Diagram.

G

8-9

Section VIII Paragraphs 8-28 to 8-31

8-28. DIGITAL CONTROL SECTION.

Paragraphs 8-29 discusses how the 4262A 8-29. digital section controls the analog section to measure LCR and D values of unknown device and how the built-in nanoprocessor creates unique performance in the 4262A. Figure 8-7 is the basic block diagram of 4262A digital section. All analog section control signals except for Test Signal and Circuit Mode Control Signals are sequentially outputted from A23 Processor & ROM in accord with nanoprocessor programming. The A21 Keyboard Control establishes the measurement function as selected when the front panel control keys are appropriately depressed. The A21 section also stores annunciation data and transfers it to A2 Display and Keyboard to display the annunciation information. A22 Display Control and RAM converts measured data transmitted from A23 into signals appropriate for display on the numeric displays (A2). The A21, A22, and A23 sections are connected to the bidirectional DATA BUS LINE (8 bit).

8-30. A23 PROCESSOR AND ROM.

A23 board consists of Nanoprocessor (A23U1) located in the center of the digital section, Program Control ROM (U15andU16), Data Bus Driver/ Receiver (U5 and U6), Device Select Decoder (U3 and U4), and Analog Section Control Register (U7. U8 and U11). The Nanoprocessor governs the various sequences and timing of the digital section and also sends properly timed measurement control signals to the analog section. For control and data processing, the Nanoprocessor has four major input/output data bus lines: Program Address, Device Select Code, Direct Control Flag, and Data Bus lines. The nanoprocessor programs are filed in the Program Control ROM which has a 4 kilobyte total memory capacity. To extract measurement control instructions from the Program Control ROM, the Nanoprocessor sequentially addresses the ROM through the PROGRAM AD-DRESS BUS line (11 bit). The measurement control instructions outputted from the ROM are momentarily stored in the Analog Section Control Register when the Data Bus Driver/Receiver is set to receiver mode. The analog section control signals which are outputted from the Analog Section Control Register are shown on the block diagram. For accurate timing control of integrator operations, the integrator switch control, ZERO signal, and 2f (= double the test signal frequency) signals are transmitted directly from/to the Nanoprocessor through the Direct Control Flag bus line (bidirectional bus line).

The Nanoprocessor accesses its program data simultaneously by addressing the ROM while the ROM outputs the nanoprocessor program codes. When the ROM outputs an analog section control signal or while measured data is being transferred through the Data Bus line, the Nanoprocessor is not accessing. The Nanoprocessor sequentially excutes program steps in accord with the program data given by the ROM. Various timing in the digital section is controlled by Device Select Code signals (4 bit). These timing control signals are decoded to DSR (Device Select: Read) and DSW (Device Select: Write) signals and manipulate the individual devices, respectively, of the digital section as follows:

- DSR: Causes Register or Memory to output data or sets Data Bus Driver/Receiver to driver mode. Nanoprocessor accesses (reads) the data sent from Memory or Data Bus Driver/receiver.
- DSW: Enables Register or Memory to store data or sets Data Bus Driver/Receiver to receiver mode. Nanoprocessor sends (writes out) data to Register, Memory or Data Bus Driver/Receiver.

The Device Select Decoder (U3 and U4) each have 15 DSR and DSW output ports.

When 4262A function is selected or changed, the INT. REQ (INTerrupt REQuest) control line goes to high level. This INT. REQ signal requests the Nanoprocessor to pause before proceeding with the nanoprocessor program and to manage the function control prior to program processes. The INT. REQ control line is always active so as to allow for servicing of interrupt requests. The INT. ACK (INTerrupt ACKnowledge) line momentarily goes high to make the vector address line valid. The Nanoprocessor accesses the vector address code (VA9 and VA1) to discriminate which control (or controller) originated the interrupt request. When the INT ACK line is at high level, interrupt control data is inputted to the nanoprocessor via A21 Keyboard Control. Successively, the INT ENA (INTerrupt ENAble) output line is set to "disable" status so as not to allow a second interruption before the present interrupt is processed and ends. The INT ENA line is also controlled in the program execute phase (specifically, this output line performs a "handshake" function when the 4262A is used as a component in an HP-IB system).

The Nanoprozessor is synchronized with the 1270HR Clock and calculates in measured quantily as a number compied foreign the fi-32.88HR (100kifrH) secondary clock palue. To distoly which, if any option is installed and built used in the instrument, the hanoprocessan access

the option code from the option selection switch setting when the Data Bus Dirive(Roceiver) is set to driver mode by a DSR signal. The Nanoraccessor controls the option section in accord with the nanoprocessor pregrams as appropriate to the selected option.

8-31. A21 KEYBOARD CONTROL

The A21 Keyboard Control is composed of two major sections: one is the interrupt control coxisiting or the interrupt Fronty Errorer (123), plezer (1012 & U33), Row Sown Counter (123), plezer (1012 & U33), Row Sown Counter (123), the Annursteafor Registr (107, U8, U13, through U32) with stores and canadies meridida annuciation decided annuciation decided and interlution decide.

to the keyboard scan signals which cause, in turn, specific groups of keys to become valid. Bach group of control keys is enabled, in sequence, to putted. The Interrupt Priority Encoder converts its address signals (4 bit octal code) as appropriate for the INT ACK signal actuates the Multiplexer so eignals pass through the Multiplexer toward the DATA BUS line. signals (3 bit) to A2 board as driven by 31.83kHz secondary clock. These ROW signals are decoded perform its function. When a keyboard pushbutton pressed, the output logic of U1 goes high and subsecuentity the Row Scan Counter stops. The contents of the ROW Scan Counter and the column number given by CLM # through CLM 3 signals are coordinated with the address of the key depressed. Simultar.cously, U1 activates Flip-Flops U3 and U14 causing the INT & signal to be cut-NT Ø through INT 3 input signals into the vector nanoprocesor input. INT 1, 2, and 3 signals are present only when the 4262Å is equipped with option(s). The INT REQ signal is send to A23 and lteyboard address Rew Scan Counter outputs periodic ROW that the vector address and 뷥

digit. Both the Dirolay Register Mic and the Scan Decoder are simultaneously driven by Scan

Decocier are simultaneously driven by a Counter U2.

> The Amunciator Register scores manifold annuctation data which are secially transformed from the Nanoprocessor to each register file of ICk U?, U8 and U15 through U21. Specifically, U15 stores fast igned annumighto data and additionally, onigizinal annumighto control signals with differed the Low Level. 12010Ha, LHE and 100Ha mesures ment hunctions. U9 also originates the CMS (Circuit Mosic Selection) signal. When the anno-

processor is transferring the annunciation data, the Data Bus Driver/Parativer is set to receiver mode.

Paragraphs 8-31 to 8-33

Section VIII

332. AZZ DISPLAY CONTROL & RAM.

A22 section consists of three major circuits: Disriley control, Extender RAM and Clock ger-erstor. The Display control does conversion and UIR) and the BCD to berea Segment Decoder (U5). When the measured data is heing transferred, he Multipheker continues selecting BCD to tever. storage of measured data to be displayed or, the seven seven tegment numeric display. When the Nanoprovessor begins to transfer measured coupls (8 bit BCD signal), the Data Bus Driver/Receiver (C19 & U20) is set to receiver mode. L, \dot{C} or R count cats passes through the Deta Bus Driver/Receiver and D lisplay segment signals are amplified to supply ufficient current to the LED displays (cathode or Q count data follows. These signals are simulcaneously routed to hoch the Multiplexer (1210 & segment decoder output signals from its two channel input signals. Other signals, fed directly rom the Data Bus Driver/Receiver, are disregarded hus, the measured data is translated into segment data which is corted as appropriate for driving the stored in the Display Register File (U9 & U17) to covorolish matrix drive of display. The Display Register File outputs the display segment signals which alternately illuminate the numeric figure of each measured count digit of the displays. These lriver output signals CAT1 - CAT8). The Scan becocier Uit outputs periodic enode scen signals which accivate, it sequence, the display for each seven segment numeric displays and, is successively

inputded or on jointled to from the Nanoprocessor. The Nanoprocessor sends address signals to the Address Register (U21) before storing data in the nanoprocessor encodes annunciation contents so Aphabetic annuciations- PASS, FAIL, O.F and J-CL— are displayed in the following manner: the that the annunciation data comprises the display egment signals appropriate for displaying annum The amurciation data passes hrough the Data Bua Driver/Receiver and is uputted to the Multiplexer. In the annunciation execute phase, the Mulliplexer selects the anomthe (unnecessary) The Dieplay Register File stores the annunciation data which coincides directly with the display agment signals. The Dela Bus Driver/Receivor con te set to driver mode when the Integrator test performs supplementary storage of data which is riggered externally. The Extender RAM (122) ignals from the BCD to Seven Segment Decoder switch is set to TST position or the instrument i data and digregards tiation figures. ciation

Extension: RAM, When data is transferred to the RAM, the DSW signal actuates the RAM to assign Address The RAM to assign Entritiation memories for storing the data. When a DBR signal actuates the RAM, the Manopucesson causes the RAM to output stored data. The RAM writes out that an autostased by signable inputted at the RAM ADDRESS sizes for signable inputted at

the RAM ADDRESS signal port. The clock pulse generator oscillates at 2.64MH, and is frequency abbilitient by a styleld reaction, britter U12 contrastorm the 2.64MH assist clock by one shall (up 1.27MH); and provide the handputerestor with a tkJH; sime base for synchronizing remotic circuit finiting. The Down Contrer (10, 10,4 and U15) produces the B188HH frequency is eccolarized the measurer shall shall frequency is eccolarized to the measurer shall be the the frequency is of $[e \approx 3.4 CBI-)$. This particular frequency is contrast clock signal is bed of the Manature shall be the frequency is for exclusion the measurer shall be the the context clock signal is bed of the Manature shall be the frequency is the solution shall be the the measurer shall be D0T. Additionally, the Down Counter drives the Sam Counter (102 which produces usply timing signal.

8-33. A2 DISPLAY AND KEYBOARD.

All section :reludes the Repbard Control, Displays, and certain decoders. The Repbard Control muniphaties the Keyboards Constol muniphaties the Keyboards Constol CIM (CoLMM) signals. All ammerican date corrept for alphatethe ammoniations are than altheir form the A21 section. Because the mage and unbiplier ammoniators date to multical from the A21 section. Because the mage mittee than one to illuminet sprear indicators. The Lorit and Decoder Driven U and Ud transfits than one to illuminet sprear indicators resembled in the keyboard publicition. The numeric displays are independently driven by the A22 section.

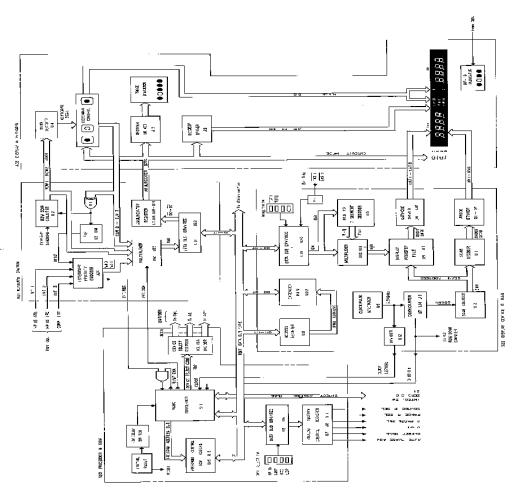


Figure 8-7. Digital Section Block Diagram.

8-11

transfert waveform from exciting the integrator and/or to permit thil discharge of the integrator expected (from perious integrator operation). Now, an Auto Phase Adjustment consisting of 'wo periods begins. During these periods, lo minimize measurement error, the prace detector phase rele-ence is pressing the AAM (Arron Phase Adjust-ment 1) and APA2 control signals administer switchas A14(2)3, Q14 and Q15 timme to accom-plish phase adjustoment of the phase adjust-ment 1) and APA2 control signals administer switchas A14(2)3, Q14 and Q15 timme to accom-plish phase adjustoment of the relation phase adjust-treat sequence. Befer to service sheet 14 for auto phase adjustoment delusils. depending on measurement function and intenti-mode, in the Cp measurement truckin integrator output voltage is increased as its charge is ropro-tional to the DUT current (voltage across At) and is decreased as its discharge across the DUT (constant the (constant) voltage across the DUT (constant attras the DUT [and in proportional to DUT), De-tailed integration operation precultar to each meas-uterneth mode group is described in "Frinciples of Operation" on Page 84. The nanoercoessor countie the thine of a 31.83kHz (19000)/r HEs) due to restricted phase delector and integrator volt-ages. Refer to service sheet 14 for offset null con-trol details. DUT signal (synchronously page dotected) is ap-plied to the integrator input. The integrator is charged with the incoming signal (dot) for a con-stant time integral (see subte in turing diagram). When an integrator charge period is initisted, the At each integrator operating sequence change, a HOLD TIME is provided to prevent a switching decay rate). On the other hand, in the Ca monutement mode, the integrator rapidly charges Pwo kinds of integrator waveforms are developed in a short time - the constant voltage across Rr tegrator until integrator output voltage reaches the The integrator discharge depends on the voltage clock for the time required to discharge the inzero level. When integrator output voltage crosses the zero level, a zero detrotor transfers the ZERO representing the current flowing through the DUT cessor through a delay writeh (A23 heard). The nanoprocessor is simultaneously set to its inftat conditions ready for heginning the display test which proceeds measurement. When the display left ends, the processor ask law 4383A to a presignals which direct the vector woll age and the discret the vector woll age and the in-unement. As may be seen from the diagram, the in-strument first measures the L/C or R value and then the dissipation (D) and Q (calculated from D) put waveforms of the integrator, execute time for 8-35. Figure 8-8 presents a liming diagram for the LINE switch is depressed to turn the instrument on, 4262A. The upper part of the diagram shows out each measurement seguence, and main control factors. Approximately three seconds after the

range individed tamp lights and suspektifts, o left or right. The displays show intenting signs (---) during automaging period. If the sample is too large (if: PkL mode) or the carge, the Suburdion Detector (A13) and a SAT signt lo the unanoprocessor. Range is shifted just after Other unanoprocessor. Range is shifted just after Other klums on ànd Q18 turns off to inferrupt the 8m signal transfer. At this time, any ourput of the in-tegrator crusted by residual phase detector output the autoranging recycle repeats until an LCR range suitable for the sample is selected. A front panel When a range is selected in which integrator dis-clarge time interval is within 162 and 1320 clock periods (limits), the mosurement sequence pro-ceeds with an LIO/R messurement cycle. To minicede tutagrator eharge/direharge (by phase deceched DUT signal). During Offsel Null period, AJRQ19 determined measurement mode (automatic mitial secting) and a capacitance measurement is ini-tated. When LCR and DQ ranges are set to AUTO, Null operations are completed (instrument docs not cycle through steps in remaining measurement sequence). This permits faster ranging. Setting LCR mize vector voltage ratio measurement error, Off. set Null and Auto Phase Adjustment sequences prevoltage and integrator output offset voltage is fed has to the input of the integralor to reduce the oulput of the integrator to zero. And this freedback voltage is stored in a memory capacitor during the measurement to eliminate any measurement error RANGE to MANUAL bypasses autoranging cycle.

signal to the manoprocessor. The Nanoprocessor stops counting and scores a number corresponding to the L_1 C or R value of DUT in its internal

registers.

power voltage (V66) is applied to the nanopro-

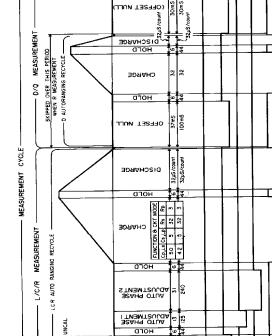
aregraph 8-34 Section VIII

Model 4262A

B34. TIMING DIAGRAM DISCUSSION.

Figure 8-7 Digital Section Block Diagram BEE INSIDE

8.12


8-11

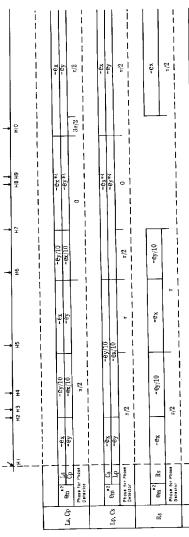
offset null sequence for D measurement, the the integrator is charged when the detection degrees. In R measurements, the D measurement D autoranging recycle is done or repeats once to set instrument to appropriate D range. After an integrator begins to charge - its incoming voltage ance of the DUT. Discharge time is proportional to the real to the imaginary part of the DUT current cycle is omitted. Since the electrical response time the charge cycle time is sometimes a function of frequency, the sequence execute times are different for measurement frequencies of 120Hz, IkHz and 10kHz. Note that the execute time for being proportional to the conductance or resistthe reactance of the DUT. To calculate the ratio of (voltage across DUT when circuit mode is SER), for each measurement frequency is different and Successively, the D measurement cycle begins. The is at "90' phase of the detected output the discharge sequence is variable. this

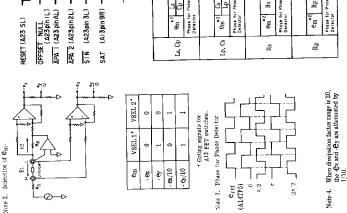
8-36. The table shown in the lower part of the diagram explains how voltage Em is selected by the instrument (either from voltage across Rr or the voltage across the UNKNOWN) and how the deswitches Å14Q19, Q20, Q22 and Q23 (detection phase) along with the phase of **C**ref signal at A14 TP5. The detection phase is sequentially selected TP5. The detection phase is sequentially selected by PHASE control signals ($\phi \sim 3\pi/2$) which are transmitted to 4 Phase Selector on A14 board tection phase for the phase detection, employed in $-\mathbf{e}_{x/10}$, $-\mathbf{e}_{y}$ and $-\mathbf{e}_{y/10}$ in the \mathbf{e}_{m} column are names for voltages shown in diagram Note 2. either PRL and SER circuit modes, is selected. Both upper and lower sections of the waveform timing diagram have the same time scale. - Cx, Diagram Note 3 shows the phase relationships of to phase detector FET (from A23 Nanoprocessor & ROM board). voltages applied the

Note

desired point from among these triggering points by pushing specific 4262A front panel buttons. trigger used when troubleshooting (service kit 04262-87001). The be stopped at or resumed from the Labels H1 through H10 in the timing diagram denote the timing for instrument using A23 service board 1262A measurement sequence can

7 mS i00mS


ICKH2 IOKH2 I2OH2


Excute Time*'

Note 1. Unit for excute time is msec except for discharge sequence.

OFFSET NULL

INTEGRATOR OUTPUT (AI4 TPI)

Section VIII Figure 8-8

z/2

-ey

-ey

₹/2

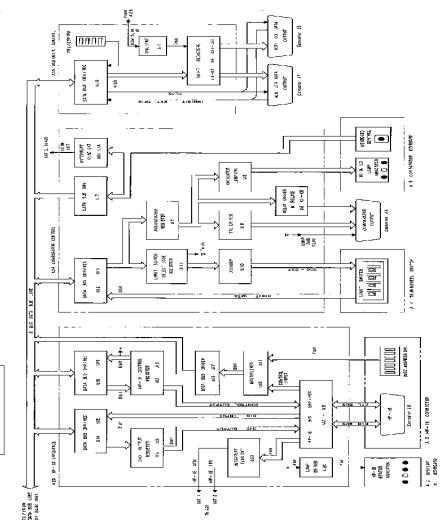
Phase for Phase Delector

×

19

Section VIII Paragraphs 8-37 to8-39

8-37. OPTIONS.


8-38. The theory of operation for the 4262A optional circuits is outlined in the following paragraphs. The currently available options (001, 004 and 101) with a summary of their functions and the material funnished are listed in Table 8-1. Finance 8.4 is a block discern showing the options for any solution the options.

the maternal runnished are listed in Table 8-1. Figure 8-9 is a block diagram showing the option section when all available optional equipment is installed. The basic instrument and the individual option sections are interconnected by 8 bit data bus lines through which both measured and control data are transferred. **8.39. OPTION 001 BCD DATA OUTPUT (A35)**. Option 001 BCD OUTPUT CONTROL (A35) consists of a Data Bus Driver/Receiver and two shift Register Files which momentarily store the measured data for simultaneous transfer of the complete data to BCD DATA OUTPUT connectors. Timing control of the A35 circuitry is done by manoprocessor Device Select signals DSR11, DSW13, DSW14 and DSW15. When 4252A TRIG-GER function is set to EXT, the instrument can be triggered by an EXE (external encode) signal inputted from either BCD DATA OUTPUT connector JT or J8 (pin 46). After a measurement cycle ends, a DSR11 pube signal sets DATA BUDTUT connector SER11 pube signal sets DATA BUDTUT connector PT or DSR11 pube signal sets DATA BUD Receiver U10 to driver mode. As long as the DSR11 signal is valid, the switch setting of the DSR11 signal is valid, the switch setting of the DSR11 signal is valid, the switch setting of the DSR11 switch (A3551) has access to the nanoprocessor for assigning the output data format in parallel (simultaneous) or serial (alternate) sequerces. The data output timing for both simultaneous and alternate sequencing is diagrammed on Page 8-70. To simplify the explanation, only the parallel output sequence is discussed here. The measured data is stored in the shift registers in syn-

the pulse train. Successively, a DSW14 pulse train actuates shift registers U4, U5, U6 and U7 to store the sequentially transferred DQ data. One shot multivibrators U1AlB generate an output pulse train consisting of pulses that are somewhat shorter than the input DSW pulses. This eliminates the possibility of the shift register not storing the input data because of a DSW signal timing error. One transfer data group is stored in the first 1/8 stack of each shift register when triggered by the rising edge of the one shot multivibrator output pulse. Thus, a total of 16DSW pulses complete storage of all data in the shift register file during the data transfer phase. Next, a DSW15 pulse activates the msec after the other. Thus, the Flip Flop generates FLAG pulse which commands the external record-Receiver and frequently sets it to driver mode to monitor the status of the INHIBIT signal outputtrain continues until the nanoprocessor senses a precedes that for DQ. Hence, Device Select signals are alternately provided for both an LCR and a DQ output cycle[as shown in Timing Diagram(Page 8-70)] The Data Bus Driver/Receiver is set to receiver the device. First, a DSW13 pulse train causes the shift registers U9, U11, U12 and U13 to store the LCR data which is simultaneously transferred with "two times" Flip Flop U2 - one delayed for 1.2 er to print the measured data concurrently pretors. After the FLAG signal is transferred, a peri-odic DSR11 pulse actuates the Data Bus Driver/ ted by the external recorder. The DSR11 pulse change in the logic of the INHIBIT signal (meaning format, the data storage and output cycle for LCR chronism with DSW13 and DSW14 pulses (each outputted 8 times during the data transfer cycle). mode to allow the measured data to pass through sented at the LCR and DQ BCD output connecthat printing is complete). In alternate data output

Table 8-1. Currently Available Options

OPTION	FUNCTION	MATERIAL
OPT. 001 BCD DATA OUTPUT	Provides measured LCR and DQ data with Polarity, Decimal Point, Unit, and measurement status in BCD code at rear panel connectors.	A35 BCD OUTPUT CONTROL (04262-66335)
OPT. 004 COMPARATOR	Built-in comparator compares measured value with LCR and DQ HIGH and LOW limits. Provides decision data in display and by Relay and TTL output.	A24 COMPARATOR CONTROL (04262-66524) A4 THUMBWHEEL SWITCH (04262-66504) A5 COMPARATOR KEYBOARD (04262-66505)
OPT. 101 HP-IB COMPATIBLE	Provides system interface capabilities in accord- ance with IEEE-STD-488-1975 recommenda- tions.	A25 HP-IB INTERFACE (04262-66525) A3 HP-IB CONNECTOR (04952-66503)

A 25 HF-15 MTTFFEE 30AT CAN NOT 95 ואפנארובט אוירו טראמו מידומאטו. המארג

ds of all puchbutton con-stor Keyboard are pro-sion phase. The Interrupt This causes Flip Flop output; pulse, The INT 3 trea the measured values lues) and stores the dectgit data is transferred in noprocessor to act on the ssed, Cade UdA sets its eyboard Control circuit the comparison in Ane decision data is input-I., Relay and Indicator a compurator leyboard he comparator keyboard pt requests to the nano CREMENT VIA The Data But 3 COMPATIBLE (A25)

Model 4262A

Successively, the other divida Option 101 HP-IB like manner. The commany A25 HP-IB DVTERcessed during the interrupa external devices in rols on the A5 Compare the circuitry to enable nterrupt request. When a basically composed of control pushbutton is prend data negaters which output logic to high leve for handling the HP-IB ignal is sent to A21 Kie nanoprocessor, Since which forwards the intern is of general HP-IB processor. At this point, tastructions on HP-IB inignals access the nanory available, a cotailed cirflag circuit directs the nail 88-1975 recommenda-71A to generate an INT 31 control bus input/outi in this manual. The nanoprocessor compa with the limit numbers (va tion data — the results of nuncietor Register U3, Th tod, in parallel, to the TJ 341. OPTION 101 HP-II An instrument equippe compatibility includes attip drivers. Driver U7.

lata bus input/output and the circuit configuration terface is otherwise readily cuit description is not giver ACE board which provid atercommunications wit arovide the functly actions put flow as directed by t design and wince general to ccord with IEEE-STD Cons. The A25 circuitry late bus driver/receivers

promes to the 4 thi addicess covery on the promes to the 14 addicess covery on the SS1 through SS7 autorus skay at high level). The SS3 tignal causas its 3 bit digit dala to change depending on the soling of the LOB HIGH LIMIT selecht that is first addresse. The digit data is framely addresse. The digit larka is framely addresse. 840. OPTION 004 COMPARATOR (A4, A5, & A24). Option 004 adds A24 COMPARATOR CON-TROL and the front same control unit comprised of A1 Thumbwined Switch and A5 Comparator Keyboard. The A24 Comparator Control manages An instrument equipped with option 004 includes a from panel control-assembly which includes four a fight fournember includes in the sage 12 e ei-stief from the restriction area of the or A. The fulumbykeel minits of L, C or R and D or Q. The fulumbykeel minits of L, which contention data for each digkt in a 4 bix code which correspondes to alterntely accesses the thumbwheal switch output built in the order of a har underse municers. First, Data Bu: Driverfreetwer is at the next-see mode and a 4 bit address rook is stored in the Limit Switch Scient. Order legisker ULT. The Decoder (in three output configurations). The panel control cunctions are managed in the following manner: the set number indicated in the control panel window. To transmit the high and low limit data from the thumbwheel switch assembly through an the control data set into the panel controls as well as the decision data transforred from the nanoprocessor so that comparison results are provided 8 bit digit data transmission line, the thumbyheel switches are assigned it addresses (each set of four U10 sets its output logic (SS0) to low level in resdigits occupies two a dresses). The nanoprocessor

8-16

Figure 8-9. Option Section Block Diagram.

 Properly learninets UNKXONXY terrinals (above or open circuit), and press SELF TEST hutton. Confirm that normal PASS annumeritor readours occur on the LCR. DISPLAY. 8.44. Figure 8-10, "How to Use Troubledioting Guidea", is helpful when starting to contabletion the 2022A. This four diagram stores the fands-mental procedures which breakchown the trouble possibilities to the component level. The toutble storozing guides are divided into the following theoring guides are divided into the following ment heing used with 4262A should be disconnected from the connectors of the 4262A. These rests isolate troubles on the external component or test jig from these on The troubleshooting guide in Figure 8-17 describes how to distinguish whether the finalty assembly is located in the wnelog or in the digital section. In Basically used for checking internel de power supply voltages of the instrument. The guide for checking the power supply section is included in used to assist in isolating the analog section from the digital section. To ducy the self test function, tefter to Figure B.11. section from the overall unit, is included in Figure 8-17. If the instrument is a standard unit equipped of Figure 8-17, the built-in self test function is Next, connect sumple directly to the CN-IGNOWN terminals without using any test 3) Securely ground the instrument to earth. If Option Section Isolation Proceedure (Fig. 8-17). This procedure, which is used to isolate the option conjunction with the troubleshooting flow diagram Model 4262A fixture or test leads. Any external equipenvironmental conditions are suspected, 4) Use a four terminal connection configuration and measure a sample. An improper connection to unknown will cause a meas-Analog and Digital Section Isolation Procedure Power Supply Section Isolation Procedure (Fig. 5-17). change the location of instrument. with no option, omit this procedure. the instantient. urement error. major procedures: Figure 8-17. preserve of a strong radieweve will sourcines dishuch the measurement. To isolate any instru-ment trouble from the above possibilities, perform measuring a particular sample, it might suggest that the sample is not measurable with the 42624. known sample reay have characteristics not measurable by the 4262A. Table 8-2 lists the 1) Measure a sample whose characteristics mod value (L, C or R and D/Q value) an known to be measurable with the 42624. Thus, if the problem is restricted to difficulty in 8-49. When 4262A is inoperative or reachings for the sample connected to the UNINOWN terminals are incorneut, you should first check power line with respect to the DUT when a measurement is addition, check for appropriate test leads or fixpure. Determining whether fuc trouble is in an mental procedure which must procede trouble-schooting the LCR Meter. Occasionally, the unexamples of symptoms likely to mislead. You should also be concerned about the operating is operated. Surrounding magnetic fields or the voltage used and next the behavior of instrument attempted. The two may be incompatible. In in the actual instrument is primary and a fundaentroumental conditions in which the instrument excernal device connected to the instrument or is THE APPARATUS SHALL BU DISCONNECTED FROM ALL VOLTACE RODGES BEFORE ANT ADJUSTIONERS BEFORE ANT ADJUSTIONER, PARTS REPLACEMENT, OR MADI-TENALOS ADJU GEPARE ARE PERFORMED FOR WHICH THE INSTRUMENT MUST BE OFEN-AGE IS REQUIRED, IT SHALL RE CARRIED OUT ONLY BY A SKILLED PERSON WHO IS AWARE OF THE HAZARD IN LIKELY TO EXPOSE LIVE PARTS, IN ADDITION, ACCES-SIBLE TERMINALS MAY ALSO BE LIVE. CAN BE GAINED BY HAND, IS LIKELY TO EXPOSE LIVE THE REMOVAL OF PARTS, EX-CEPT THOSE TO WHICH ACCESS ED. IF, AFFERWARDS, ANY ADJUSTMENT, MAINTENANCE OR REPAIR OF THE OPENED INSTRUMENT UNDER VOLT-THE OPENING OF COVERS OR CAUTION 842. TROUBLESHOOTING. the following examinations: Paragraphs 8-42 to 8-44 VOLVED. Section VIII

> Figure 8-9 Option Section Block Diagram

EE INGCE

8.16

8-16

Model 4262A

Analog Section Troubleshooting Procedure to Assembly Level (Fig. 8-18).

The troubleshooting flow diagram in Figure 8-18 helps to isolate a faulty board assembly in the analog section. The built-in self test function is also helpful in troubleshooting to the assembly level.

Component Level Troubleshooting Guides.

Component level troubleshooting guides are provided for each major assembly (other than for A21, A22 and A23 boards of the digital control section) in the service sheets. Procedures for narrowing down the trouble possibilities in A21, A22 and A23 boards to the component level are covered in "Digital Section Troubleshooting Guide". Refer to guideline below.

Digital Section Troubleshooting Guide.

The search for and location of a faulty component in the digital control section is done in accord with the troubleshooting flow diagrams in Figure 8-19. To facilitate an "easy to make" failure diagnosis, a "signature analysis" method was adopted for troubleshooting both the digital and option sections. When diagnosing with this method, a Signature Analyzer (HP 5004A) is necessary to properly employ the procedures and associated signature maps (see service sheets). Refer to Figure 8-12 for signature analysis guidelines.

8-45. Table 8-3 describes typical front panel symptoms present when 4262A internal controls

(adjustable points) are not well-adjusted. A search for and interpretation of trouble symptoms by operating front panel controls is important and often gives hints as to trouble location. Table 8-4, Front Panel Isolation Procedure provides such an approach to troubleshooting. These primary troubleshooting procedures are supplemental to and should be used with the main procedures in the flow diagrams.

WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION PROVIDED BY THE FUSE HAS BEEN IM-PAIRED, THE INSTRUMENT MUST BE SECURED AGAINST ANY UNINTENDED OPERATION.

CAUTION

CAPACITORS INSIDE THE INSTRUMENT MAY STILL BE CHARGED EVEN THOUGH THE INSTRUMENT HAS BEEN DIS-CONNECTED FROM ALL VOLTAGE SOURCES. BE SURE THAT ONLY FUSES OF THE REQUIRED RATED CURRENT AND THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF REPAIRED FUSES AND THE SHORT-CIRCUITING OF FUSE HOLDERS MUST BE AVOIDED.

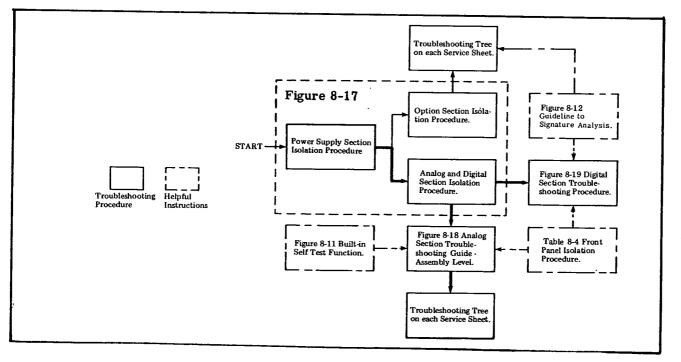


Figure 8-10. How To Use Troubleshooting Guides.

Model 4262A

Section VIII Table 8-2

Table 8-2. Symptoms Likely to Mislead.

Category	Symptoms	Probable cause
	When LCR RANGE setting is in AUTO, the range is shifted alternately up and down between two ranges and does not settle on a specific range.	This symptom occurs when the induc- tance of an inductor with core changes because of the current flowing through the coil.
L MEASUREMENT	Measured values differ depending on the range selected.	Permeability of inductor core changes with measurement signal level (current), which differs for each range. (Measure in MANUAL ranging mode.) See Note below.
	Measured values differ depending on the selected test signal frequencies. Specifically, a large difference exists be- tween the measured value at 120Hz and that at another test signal frequency.	This symptom is because of a difference in the permeability of the inductor core developed by two different measure- ment frequencies.
C MEASUREMENT	When measuring a small capacitance at 120Hz test signal frequency, measured counts on the LCR DISPLAY fluctuates by several counts.	Interference of ac frequency hum noise. Check for any ac line cables close to the test leads. Check for grounding of the instrument chassis.
R MEASUREMENT	Both LCR and D/Q DISPLAYS are blank () with respect to the sample connected to the UNKNOWN terminals.	The DUT is a wirewound resistor having a large inductance. (Note that some standard resistors are used only with dc current and their calibrated values are so certified.)
Common to all LCR MEASUREMENTS	When measuring an inductance, capa- citance or resistance of a large value, a measurement error over the specified limits occurs.	C OFFSET control (related to induct- ance and resistance measurements) or L OFFSET control (related to capacitance measurement) is misadjusted.

Note: For example, if value of sample is 187.0μ H on the 100μ H range, the auto ranging function moves to 1000μ H range. Then the sample may develop a lower inductance at the applied measurement signal on the 1000μ H range. It may, for example, develop an inductance of 160.0μ H that is suitable for measurement on 100μ H range. The range will again be reset to the 100μ H range and, as a result will repeat (auto range) up and down between the lower and the higher ranges.

Adjustment	Symptom
A12R1	When TEST SIGNAL setting is LOW LEVEL, autoranging operation sometimes does not work well.
A12C3	Measurement accuracy of 10kHz measurements is lower on the highest L and R measurement ranges or the lowest C measurement range.
A12C11	C ZERO ADJ control range is improper.
A13C1	The 10kHz measurement error is excessive.
A13R1 (OFS-1)	When making a measurement in the series equivalent mode, the measurement accuracy is sometimes lower (due to improper dc level at A13TP3).
A13R2 (OFS-2)	When making a measurement in the parallel equivalent mode, the measurement error is sometimes excessive (due to improper dc level at A13TP3) — especially when TEST SIGNAL is set to LOW LEVEL.
A13R66 (OFS-3)	Measurement accuracy will become lower when offset voltage at A13U6 pin 7 is not zero volts. This is usually more noticeable when TEST SIGNAL is set to LOW LEVEL.
A13R67 (OFS-4)	D measurement error sometimes exceeds specifications (impossible to automatically adjust the detection phase of phase detector). This symptom is present when auto phase adjustment signal at A14TP3 exceeds 0 ± 3 volts.
A14R1 (ZOF)	Measurement errors for both LCR and D/Q values has increased. The error is maximum at count displays of 1999 for all three measurement functions (Cs, Lp and Rp).
A14R15 (APAO)	D measurement has significant error (detection phase error).
A23R12 (VR1)	Instrument is inoperative or measurement sometimes stops.

able 8-3. Front Panel Symptoms of Internal Control Misadjustment.

Section VIII Table 8-4

Table 8-4.	Front Panel Isolation Procedure.	

Symptoms	Probable Faulty Board
ZERO ADJ L control malfunctions but measurement is made correctly.	A11
Measured value is incorrect at a particular range setting.	A11, A12
Measurement is not made correctly when TEST SIGNAL setting is at LOW LEVEL.	A11, A13 Note 1
Displayed count is unstable and fluctuates several counts at 120Hz measurement.	A11, A14
ZERO ADJ C control malfunctions but measurement is made correctly.	A12
Autoranging operation skips a particular range.	A12
U-CL is displayed on every range.	A13
Measurement is made only in either PRL or SER mode.	A13
Display count changes randomly.	A14
Figure(s) in numeric display is (are) defective.	A2
An indicator lamp does not light.	A2, A21
Pushbutton controls do not work (always invalid).	A2, A21, A23
An indicator lamp stays lit.	A21
All numeric display are blank.	A22
Trigger lamp does not light or stays lit.	A22, A23
Autorange control is inoperative.	A23

Note 1: If test signal voltage at H_{CUR} terminal is correct (140mVp-p), A13 board is faulty. If not, A11 board is faulty.

SELF TEST FUNCTION

Pressing the SELF TEST button (located at left in line with the CIRCUIT MODE selection buttons) directs the instrument to begin a sequence of instrument operated self-test functions. This is an outline of how to use the self test function for failure diagnosis.

Automatic self test settings:

An appropriate equivalent circuit mode (either to SER or PRL) is automatically selected for the duration of the self test. Since self testing is done in a particular equivalent circuit mode for each of the measurement parameters (L, C and R), auto testing is limited to the ranges specified for these circuit modes. The table below shows measurement ranges tested by selftest function. However, since, during self test, all instrument measurement functions are brought into action (including all the range resistors), this test is broad check of overall instrument performance for all ranges.

Table 8-5. Self Test Ranges.				
Range	Cs -	Ls -757-44-	Rs -11	
1	100pF	100µH	1000mΩ	
2	1000pF	1000µH	10Ω	
3	10nF	10mH	100Ω	
4	100nF	100mH	1000Ω	
5	1000nF	1000mH	10kΩ	

Note

Multiply range by 10 at 120Hz and by 0.1 at 10kHz test signal frequencies.

How the self test function operates:

To perform the self test, the instrument simulates a measurement of either zero or infinite impedance. For these tests, the UKNOWN terminals are appropriately terminated (short or open). Under these test conditions, the integrator develops an output voltage corresponding to a 1000 count display (full scale) for the LCR measurement test cycle and a 000 count display for the DQ measurement test cycle. The nanoprocessor monitors the 1000 and 000 counts calculated from the integrator output. If either or both of the counted numbers differ by more than 5 counts from their respective nominal values, a FAIL annunciation is displayed on the LCR DISPLAY. The nanoprocessor also monitors a SAT signal from Saturation Detector (A13) to further categorize the failures into other subdivisions. Section VIII Figure 8-11

Self Test Diagnostic Guide

Table 8-6 "Self Test Displays and Trouble Possibilities" is helpful in troubleshooting the analog section. No pushbuttons except for the FUNCTION and TEST SIGNAL controls should be depressed while the self test is being performed (if a pushbutton is inadvertently pressed, the self test function will be reset and will require reactivating).

Display	Source of FAIL signal	Probable Cause of Trouble
FAIL 1	Process Amplifier has been saturated by a signal of excessive amplitude. Saturation Detector is generating SAT signal.	 One of the range resistor selection switches on the A12 board is defective. One of the signal selection switches on the A13 board is defective. Saturation Detector on A13 board is faulty. A13Q17 is always conducting (display will change to PASS when LOW LEVEL button is pressed).
FAIL 2	Integrator has developed an incorrect output voltage in an LCR measurement cycle.	1. Test signal is not present at HCUR terminal.
FAIL 3	Integrator has developed an incorrect output voltage in the D/Q measure- ment cycle.	(A23 Processor and ROM board assembly) is faulty.

Table 8-6. Self Test Displays and Trouble Possibilities.

Note: The trouble possibilities outlined in the table above presupposes that the digital control section is operating correctly. A FAIL indication can also be generated by trouble in the digital section.

Digital Section Troubleshooting Using Signature Analyzer.

The advantage of troubleshooting based on "Signature Analysis" is accuracy and ease in finding failures. It is generally difficult to search for an error by means of observing waveforms on an oscilloscope for the reason that bit trains in a digital circuit seem to be much the same whichever is observed. Specifically, to find the errors in stream of a large bit size (or word length) data takes much time and requires the use of an instrument such as a logic state analyzer. Hewlett-Packard has proposed a method called "Signature Analysis" which recognizes the bit pattern measured in a 4 digit hexa-decimal code (signature) for running an easy diagnostic test program. With the Signature Analyzer (HP 5004A), the signatures are displayed in a readable 4 digit-figure set of alphanumeric figures (0 1 2 3 4 5 6 789 A C F H P U). The signature analysis is based the usual signal tracing method followed in troubleshooting an analog circuit. According to signature analysis, devices in a digital circuit are checked with the signal analyzer by comparing signal input and output signatures to and from each device for the "correct" signature denoted in the service manual signature map. If a signature is not identical, the troubleshooter need only trace the bit train in opposite direction to the signal flow and, when a device is noted which generates an erratic signature despite a correct input, the component may be regarded as faulty. One additional important consideration, since the actual program ROM board (P/N: 04262-66523) in the 4262A does not include a self-test program for signature analysis (as part of the program ROM), a troubleshooting board is required when diagnosing with the Signature Analyzer.

When the troubleshooting board is installed in the instrument, a test program is written out from a special ROM which activates overall the digital control circuit, and, if included, any optional circuits. For convenience in troubleshooting the 4262A, this signature test board is supplied as Service Kit (04262-87002).

HOW TO USE THE SIGNATURE ANALYZER TEST BOARD.

Note

Use either procedure 1 or 2 depending upon instrument serial number.

- 1. Serial numbers 1710J00340 and below.
 - a. Remove A11, A12, A13 and A14 boards from instrument.
 - b. Take out A23 Board.
 - c. Disconnect A23U16 (ROM) from socket J2 and put aside.
 - d. Disconnect signature program ROM from socket J3 (labeled TEST ROM) on test board and install the ROM in place of A23U16.
 - e. Reinstall A23 Board in its normal position.

Note

When testing ROM's with A23 board assembly, install the ROM in socket J1 (labeled 2708A) on the test board. Install the test board in place of A13 board assembly. Observe signatures at test points D0 through D7 on the board and follow troubleshooting procedures. Test board flat cable need not be connected anywhere.

Figure 8-12. Signature Analysis Guide (sheet 1 of 3).

Section VIII Figure 8-12

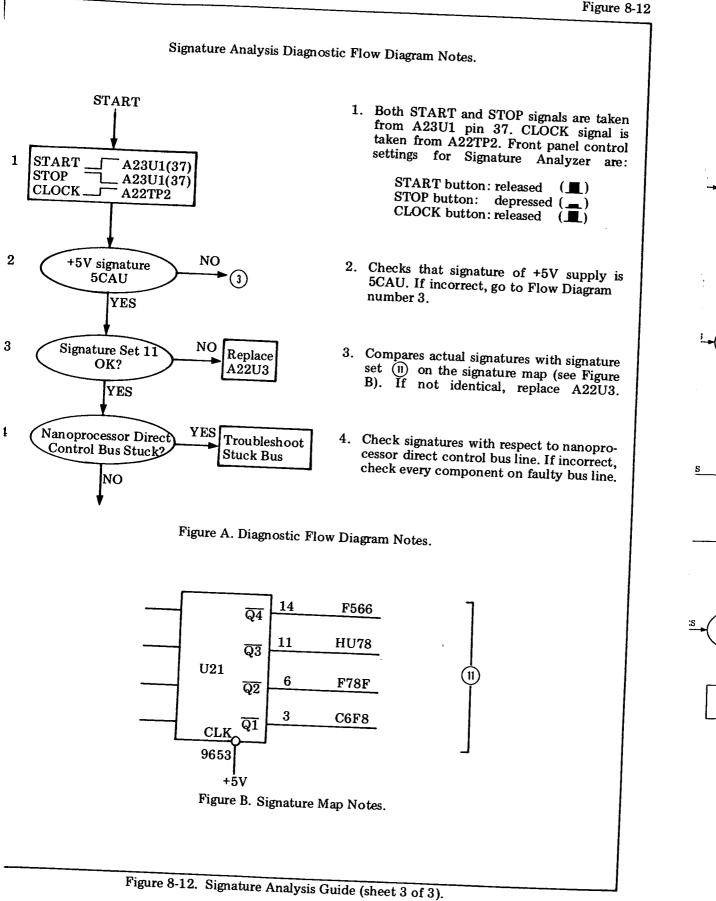
Model 4262A

- f. Turn instrument off and on (press LINE button) to reset digital control circuit and to return test program to its initial address line.
- 2. Serial numbers 1739J00341 and above.
 - a. Remove A11, A12, A13 and A14 boards from instrument.
 - b. Install Signature test board in place of A13 board.
 - c. Take out the A23 board.
 - d. Disconnect A23U15 (ROM) from socket J2 and put aside.
 - e. Connect 24 pin plug of the test board flat cable assembly to socket J2 on A23 board.
 - f. Reinstall A23 board in its normal position.
 - g. Turn instrument off and on (press LINE button) to reset digital control circuit and to return test program to its initial address line.

Note

When testing ROM's on A23 board assembly, install the ROM in socket J2 (labeled 2316A) on test board. Observe signatures at test points D0 through D7 on the board and follow troubleshooting procedures. Test board flat cable may be left connected to A23 board.

SIGNATURE ANALYZER TECHNIQUE.


An active digital hand-held logic tracer coupled with an active pod (with four miniature clip connection leads) is sufficient for detecting the test signal and for development of the signature on the Signature Analyzer display. The active probe has access to the desired node in the circuit being tested and transfers this input data to the analyzer. The four input leads of the test cable active pod, connect the gate signals — START, STOP, and CLOCK — from the instrument being tested to the analyzer. The remaining lead is connected to instrument GND. The START signal is an open "window" (measurement gate) signal which causes the signature analyzer to prepare for receiving data via the active probe. The STOP signal causes the window to close. The CLOCK is taken from the time base of the instrument and permits receiving input data and gate signals in synchronization. Polarity of the gate signal active (enable) edges (positive or negative) can be selected by the front panel controls of the signature analyzer. Probing points and connection locations of START, STOP and CLOCK leads are designated on the troubleshooting flow diagrams.

- Note —

Use an -hp- Model 547A Current Tracer to trace a "stuck" node current.

Figure 8-12. Signature Analysis Guide (sheet 2 of 3).

Section VIII

Section VIII Paragraphs 8-46 to 8-48

8-46. REPAIR.

WARNING

BEFORE PROCEEDING WITH REPAIR, BE SURE THAT IN-STRUMENT IS DISCONNECTED FROM POWER LINE!

8-47. REMOVAL OF Q2 or Q3.

- a. Fully loosen top cover retaining screw located at rear of instrument and lift off top cover.
- b. Remove left handle mounting screws (2). Slide left side panel toward the rear of instrument and take off.
- c. Remove the two transistor retaining screws.
- d. Lift out transistor.
- e. Install new transistor. To maintain good thermal diffusion, use fresh silicone paste on transistor and insulator sheet.

8-48. LINE SWITCH (S1) REMOVAL.

- a. Perform steps a and b of paragraph 8-47, removal of Q2 and Q3.
- b. Remove the two screws which fasten LINE switch S1 to plate on side frame.
- c. Remove the cable clamp screw (located at center near top of side frame).
- d. Pull LINE switch toward the rear of instrument and take out switch with extender shaft from instrument.
- e. Pull extender shaft out of switch shaft. Unsolder cable from switch.
- f. Install new switch. Envelop the switch with heat contractible tubing.

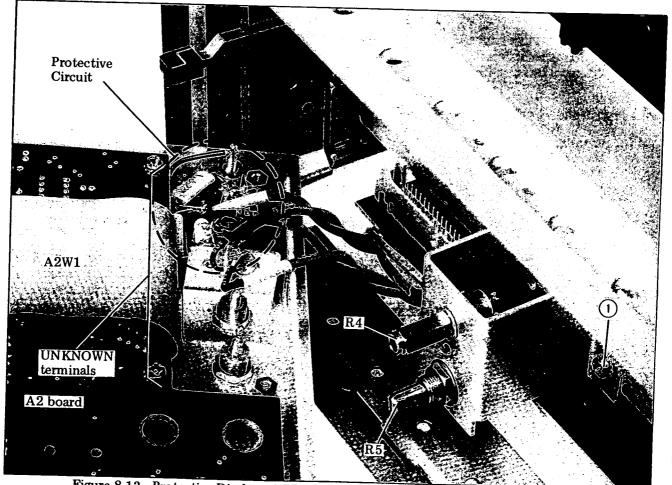


Figure 8-13. Protective Diode and ZERO ADJ Control Potentiometer Replacement.

3

ſ

L

f

Α

Model 4262A

-49. PROTECTIVE DIODE REPLACEMENT (CR4, CR5, CR6 and CR7).

'o replace protective circuit diodes connected to INKNOWN terminals (Low side), perform the ollowing procedure:

- a. Remove top trim strip from front frame (use a screwdriver to lift out the trim).
- b. Remove the two left hand screws from among the four screws located at the top side of the front frame.
- c. Turn instrument upside down.
- d. Remove the two right-hand screws from among the four screws located at bottom side of the front frame.
- e. Carefully pull unknown terminal binding posts forward and front panel assembly out.

CAUTION

DO NOT USE EXCESSIVE FORCE OR WIRE CONNECTIONS TO UNKNOWN TERMINALS MAY BREAK.

f. Disconnect flat cable 40 pin connector A2W2 from the plug mated with A21 board assembly. See Figure 8-14.

- g. Disconnect flat cable 40 pin connector A2W1 from the plug mated with mother board. See Figure 8-14.
- h. Unsolder wire leads to diode and disconnect diode from the binding post soldering lugs of UNKNOWN terminals.
- i. Install new diode. Solder wire leads to new diode.

8-50. ZERO ADJ CONTROL POTENTIOMETER (R4 and R5) REPLACEMENT.

- a. Perform steps a through g of paragraph 8-49 Protective Diode Replacement.
- b. Remove retaining screw (1) shown in Figure 8-13.
- c. Remove the potentiometer retaining nut and unsolder wiring leads to the potentiometer.
- d. Install new potentiometer.

8-51. A2 KEYBOARD AND DISPLAY BOARD DISASSEMBLY.

- a. Perform steps a through g of paragraph 8-49 Protective Diode Replacement.
- b. Remove the 8 screws (1) through (8) in Figure 8-14) fastening A2 board to front panel.

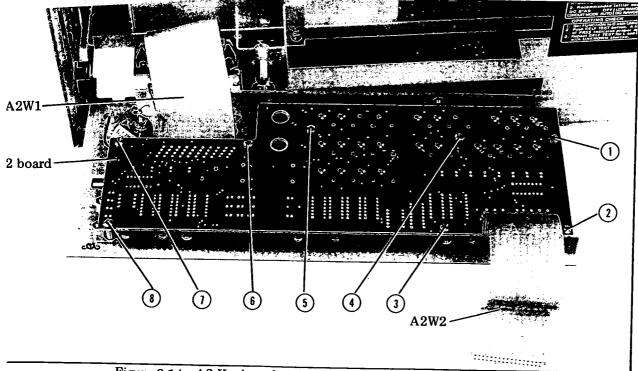


Figure 8-14. A2 Keyboard and Display Board Disassembly.

Section VIII Paragraph 8-52

8-52. KEYBOARD SWITCH LED REPLACEMENT.

- a. Perform steps a through g of paragraph 8-49, Protective Diode Replacement.
- b. Remove 8 screws (1) through (8) in Figure 8-14) fastening A2 board to front panel.
- c. Take out A2 board from instrument.
- d. Remove pushbutton switch by melting plastic legs of the switch. Use tool HP P/N 5951-8516.
- e. Unsolder defective LED.
- f. To assure that the newly installed LED will not rub against the switch plunger (when pushbutton is pressed), a soldering guide is required. Fabricate a soldering guide from a piece of 3.18mm (0.125 inch) internal diameter, thin walled plastic tubing 4.76mm (3/16 inch) in length. If tubing is not available, use a 4.76mm strip of paper rolled to make up an approximate I. D. of 3.18mm.
- g. Insert tubing (or rolled paper) into bottom of plunger of new switch (see Figure 8-15).
- h. Insert the new LED into bottom of switch plunger containing tubing.
- i. Rotate LED (in bottom of switch plunger) so that the shortest lead passes through the P. C. board mounting hole (identified with dot marking). See Figure 8-16.

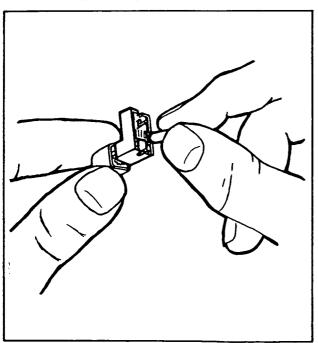


Figure 8-15. Inserting Tubing Into Switch Plunger.

- j. Install switch and LED combination onto A2 board assembly.
- k. Grasp LED leads (back side of A2 board) and pull LED flush against front side of A2 board.
- 1. Solder LED to A2 board assembly.

CAUTION

WHILE SOLDERING LED, PRESS SWITCH AGAINST FRONT SUR-FACE OF A2 BOARD ASSEMBLY. BE CAREFUL NOT TO MELT PLASTIC LEGS OF SWITCH OR TO CONTAMINATE IT WITH SOLDERING FLUX.

- m. Take off switch and remove tubing (or rolled paper) from switch plunger. Clean any re-residual flux from A2 board assembly.
- n. Mount switch over LED and operate switch several times to assure that switch plunger does not rub against LED, and that the lightpipe in key-cap does not contact LED before switch plunger bottoms.

Note

If the results of step n are not satisfactory, repeat the LED installation procedure.

o. Install switch (over new LED) onto A2 board assembly.

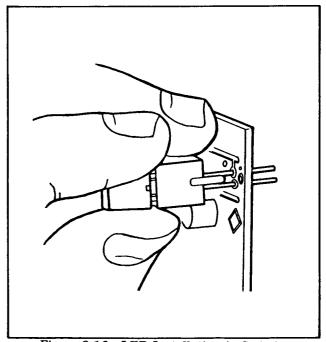


Figure 8-16. LED Installation in Switch.

Model 4262A

Section VIII Paragraphs 8-53 and 8-54

8-53. PRODUCT SAFETY CHECKS.

WARNING

WHENEVER IT APPEARS LIKELY THAT SAFETY PROTECTIVE PRO-VISIONS HAVE BEEN IMPAIRED, THE APPARATUS SHALL BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNINTENDED OPER-ATION. THE PROTECTION IS LIKELY TO BE COMPROMISED IF, FOR EXAMPLE:

- -- THE APPARATUS SHOWS VISI-BLE DAMAGE.
- -- THE INSTRUMENT FAILS TO PERFORM THE INTENDED MEAS-UREMENT.
- -- THE UNIT HAS UNDERGONE PRO-LONGED STORAGE UNDER UN-FAVORABLE CONDITIONS.
- -- THE INSTRUMENT HAS SUFFERED SEVERE TRANSPORT STRESS.

8-54. The following five checks are recommended to verify the product safety of the 4262A LCR Meter (these checks may also be done to check for product safety after troubleshooting and repair). When such checks are needed, perform the following:

- 1. Visually inspect interior of instrument for any signs of abnormal, internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.
- 2. Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cord plug. The reading must be less than 0.5 ohm. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.
- 3. Check GUARD terminal on front panel using procedure (2).
- 4. Disconnect instrument from power source. Turn power switch to on. Check resistance from instrument enclosure to line and neutral (tied together). The minimum acceptable resistance is two megohms. Replace any component which fails or causes a failure.
- 5. Check line fuse to verify that a correctly rated fuse is installed.

Model 4262A

Section VIII

TROUBLESHOOTING FLOW DIAGRAMS

Figure 8-17. Analog a	and Digital Section Isolation Procedure
Figure 8-18. Analog	Section Troubleshooting Procedure to Assembly Level
Figure 8-19. Digital S	Section Troubleshooting Procedures
+	Primary Diagnostic Flow Diagram
	Program ROM Diagnostic Flow Diagram
	A23 Board Diagnostic Flow Diagram (Nanoprocessor and Device Select Decoder)
Flow Diagram D.	A23 Board Diagnostic Flow Diagram (Analog Section Control Signals)
Flow Diagram E.	A22 Board Diagnostic Flow Diagram (Clock and RAM)
Flow Diagram F.	A22 Board Diagnostic Flow Diagram (Display Control)8-40
Flow Diagram G.	A21 Board Diagnostic Flow Diagram
Flow Diagram H.	A21 Board Diagnostic Flow Diagram

Section VIII Figure 8-17

Go to Ligare 5.12 • Analog Section Tracht-alcoring to Americus Laved 2. Tree UP and LV 4%, and the Lapert AJ, usuke vela LOC XXXZ and LAK to the settler of XXA La Laborag 2.414. Go 3: their settler ZODE Followed UBOrA X. March 100, 604. KOOME www. The second secon E H O H P ALU TYDNAR J X(ZIT) () II II ALEACTION CIECUTI MODZ LICIE TANCIE TREE ADOXAL 1, Eal 42624, controls as follows: / puije ¥. *Controcal XACE I ICL J cml XXVVII:14 vr.Di a shturching Berd. Cecheropy TDFS/DFV: 60ms Duction Text Sazaya () chucking and Digital Headon Jurka, kao Fransalum ⁸ kZ(4.5) PHASEn XA2540.1 XA2L/FU Go kr Figure 0-19 Zigtual Bredus Trauble Inhmörg Gukie. AXCUJ MIT THE PL (HI) CYA (TOKGYX PHABLe VEEL1 1. Remore ±11, A12, A13 art A 1 hore chow the write EUXCLION .C. CIRCUTE MCDE: Prof. Unit-zona: Cycar (Opt) a. Characti Azamite pin + la class A comman (UDF p.a.0. 4. Aller en ceder, porten - - -corard signels wire cesil-Kecopi. Jun die weie-forme eurech 2, Set reizh A223U to TEC 1 poétier. XA:J(II), <u>OFN</u> XA17[A1) <u>XA17[A1)</u> XA:J[21], <u>XA:J[21]</u> Perform 32-17, 2527, 17 CAB is Felinchel en ryce. Under angle, mel: mel. Protedure. le the brudite comment on 20 a porticular d. d. d. m. 210 1. reconnected: function? Gara Cigue 8.10 Digiel Serska Crouble-elmainę Garla. ЗŚ Ceet bruck actor to rectoring TESE SEAAAA recentlet. (1280005 au ling jool at seave 2014gif Guesti di signut locali Inauceal ni buas uhu titlevi fi lhetable spinios? Co & Figure 3.16 Analog Eaction Trouble Morcing to Assertly Levi Go to Figura 6-19 Digital Sector, Teorito-chaoriar Garito. **Cool brigge Jump (lish)** ģ, 9 Ilence cylicn bardill) grau ir barhfel uslan fact informati fan residenty annt harde symptom cargan. Drám Band Na.
 010
 A.S.(1);41: D2102-601241

 061
 A.S.0(7);41: D2102-601241

 071
 A.S.0(7);41: D2102-601241

 071
 A.S.0(7);41: D2102-601241
 Control Scottern (solution) (front dimension) (fronthis wate equated with any aptical, and thin reconstance) If und how upped with labb diptions. Claim UR4, Los Luid lucan re-listicited for exteribiting with the Al3 or ASA burght Intil Aurille 1. t tiu to Service Street for Articular booml. 1, 43 to reinvice dont for Concellen board, L. Lendsræ døfredbærhnen: bjerkesalling løsads con re å Ume. PawerSupply Section Indiction Processes. Ate the kilotaling (* will: area w. & Fixand : arr.; At MPTE = 12,5 w = 12,5 w ADPTE = 12,5 w = 12,5 w ADPTE = 14,5 w = 16,5 w ¥ L. N.3 cut all printed clear it locade from coll l. Ans de valuepes on AB locard sow regree? Ele lo Semion Accel No. 5. Dras ZpHX suck relation to hum in downmain on. Worky usual inter-pract, electron throads and inter-cuenty scale secting of the door the finity scale secting of the door the finity scale secting of the pain reak, as in the pains S. (F) paint Ecology Outics START -Ĵ

Model 4262A

831

.7

Figure 8-17. Analog and Digital Sections Isolation Procedure.

. .

.

. · ·

· · · · · · ·

....

Figure 6.17 Analog and Digital Sections Jeolation Procedure see searce

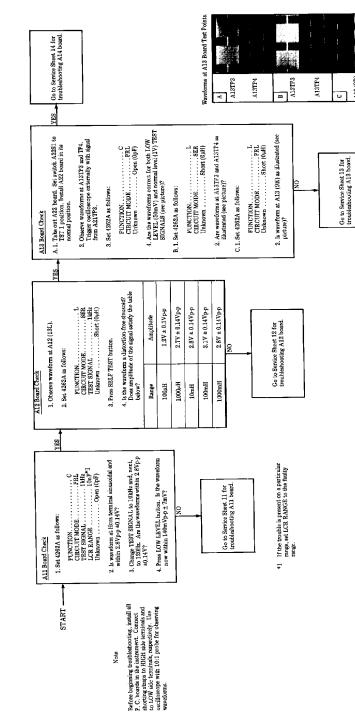


Figure 8-xx. Analog Section Troubleshouting Procedure to Assembly Level.

2V/div .2ms/div

A13 (9R)

8-33

Section VIII Figure 8-19

8:35

Figure 8-13. Digital Section Thoublashooting Procedures, Flow Diagram A. Primary Disgnostic Flow Diagram. Now Diagram ROM Disgnostic Plow Diagram.

19%	2892		ä	125J	2994	TEN.	1037		19	C. P.F.D.
Filt	214Ki		ŝil	5C.F	31HD	200	3645		ĸ	HÊ'ÎK
164	FCPII		ll5	.1115.L	AU12A		7573		23	IIFE
H5-1	7555		×	F502	:IndC	1C2 P	LFU	biros,	ä	(3F/
2747	AIIII	latur:	03	318:46	ULS:	61C6	1925°	51 gma	R	30HI 30HI
HĐứ	164F	et Aig	:2	BOAP	222F.	FUE	- 0r.H	N Test	ы	3502
FUUI	2859	enii Te	Ξ	FAH3	4581	1995 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 19	1558	tair 16	ы	10
800	20.6P	ngrem	Ξ	13[15	64 JI	2538	34,29	e Prop	ß	42UB
ካርም	礼指	Table B. Pragrem ROM Test Riguaturas.	Mindow tost (-57)	MER	IP34	BP.54	5P54	luble C. Signature Proprim RON Test Signatures	Window test (154)	8154
1316-0425	1316-0424		AP Part Xa,	04262-85032	04262-85003	04262-85004	0/ 262-85005	aldel:	19 Part No.	J4262-850CB
A23015	A231115		1003	910627	X23U17	A25018	811628		NI	

GON HP Part No.

Table A. Fongran RCM Test Signatories.

7 och 1234 and YI.

2

Com in 2.354 a (3906) y clack puise lie di-serret at X21122

2

Lan a 1,2799, chuốc M pulse le abservei ng 2.2000 pin 97

≘

Chorris closk pulse of A 255/12. It its the county 1.074c4/950arcj2

Headers de valsage et PRS Filher. Jose vols-melur taulig taes the sulls forged in Filh 45th

vE3

. Nazitor da level ut Azurse.

ΞĮ,

L. spaitor do lovel of A202 p.c. J.

1,63

E. - 💬

Jum Instrucent off and, after several scenes, turn m, egain.

Press LOE button to be turn learnment

ni.

j,

Lieck. 423772.

Crack \$2000 and \$1.

.0.eck /23034 zzd 014.

5月 天の 上

8

₹ L

8

nr 4 +3 - 5rec 4

6-2 - 550C-2 2

. tuu sag ungenan. cua be chserved (see chgure belch)Y

. Cri a star would an be described (sec lighte below))

÷

"White Her trills setted curlend 1710/0050 and below, renited do level do 00050 do level do

Check A2300, Gu and CP2,

Chect A2502, Q2, 320 und GIZ,

ß		ä	Alî'll
2		123	11.2FE
11.0	birtes,	Ä	(45)
500	51 gna	×.	30HI 30HI
5	N Jest	E.	3502
1100	taur 140	8	4208 A215 3502 AMI 1297 USPE A011
1	e Prop	3	42UB
Chair 1 11 11 11 11 11 11 11 11 11 11 11 11	luble C. Signature Propram ROM Test Signatures.	Window test (154)	8P54
	'lable	19 Part No.	04262-85058
		NO	

						•				
NDD	19 Part No.	Window test (154)	8	0. 12	В	N3 N3	×	23	쑵	[🖻
	34262-85008	8154	421HB	4208 8.215 3502 3AHI U397 11576 ABUI 2795	3502	NH N	(4E)	JEII	UL ůk	Q:ld 7
Sligatiure	Sligature inrigen Stillings:	я		ļ					1]
(Title &)				Mutu	1. 14	n yiq	sble A	÷.	lerar d	Soto 1. Apply Table A or B deparding upon
	stremminister ward Scott/Stop pia 2 \$10 militation vard Scott/Stop pia 2 \$10 militation vard Stoff pin	SICP pia 2 Filly par 2 Pir			= 25	arial .	ant so	matrument somal munuur: Seriul Numher 1779.00341 and above: Tabl	:171 C	unuur: D.00341 ché Above: Takte à,

P

Preparatory to tradi Johund-14 using the feet program, perform the Sollowing (see fore 2):

lhataill signifine jne-gen RVI in tait borbi socht JL, Disconnect ACULA from cast hourd sector Ji

r.i

Matomatri Ula Con Pert morti molei JL, Y pert POI Marile etti Lau procelli si Aue all'stigatures all'stigatures

ΥE3

븳

ure dit signatures chemical <u>VDS</u> urrich (see Dable A)?

ā

Berrow All, All, All and All Louis (A.1).

@

Soto 1. Apply Table A or B deparding upon	THEFTOPPE SCRIPT NUMBER	Seriel Munher 173020341 and	wbove: Takla A.	Seriel Vunice 1710.00505 and	beinw: Thilo D,		To werify that signature rulyzer	"window" has been taken correctly,	fürst check the signature for 45V	(test heard councelor 13%).
istie di Sat	PGT - T T set mand SCOUNSTOP of a 2	The Latter and Sourcelly page	LOCTCheck and Clofk pir		fair s 1 and 3)	Dational Test hand Stationary min. 3	The first batel Steersteer phy 1	atta test loud 0000 pit.		

1	et et		
	62		ΞĒ
	200-i		装装型
	THUS THUS		
	strerum that and Scottfally pin 2 STD of the and Scottfally pin 2 COLT_Dee manifolds pin		stating. The hourd strangant pic . Statute to band statistic pin . statute to band statistic pin .
	338	(Tali' ≈ A uni 2)	i i i
(Table A)	552	Ŷ	
휜			

	-E E		-11
			stattuur teet hound statiyatte pin 2011 juur teet hound statiyatte pin 3121 juur teet hound statiyatte
	DICS DICS		1232
	STRETT THAT AND SCHICKED STRETT THAT AND SCHICKED STRETT THAT AND SCHICKED SCHOOL THAT AND SCHOOL FILE	7	Pire Pire
_	33A	'n.i	<u>in n n</u>
(Title A)	bird	(Tali is I well 2)	문문
Ē	5 G 3		8 E C

	42		Ξ£
			装装生
	STREAT THAN AND STATISTICS PAR STATISTICS AND STATISTICS PAR CLYCOT CHE MAND CLOCK PAR CLYCOT CHE MAND CLOCK PAR		statistum teest hound stationarde pin 2017 um test hound stationarde pin 3018 um test hound stationarde pin
	and Second	_	토필립
	338	(Tair s I wa C	5 5 5
e 10	556	7	550
(Table A)			

	erum stand Staff. piz 2 21 J. Tost mand Staff. piz 2 21 J. Dec neard Staff. piz		atter Teat hand stratighter pin 1 Arter band statighter pin 1 Atter band statighter pin
	22 ju		装装装
			artun finan kund staffygfið 11. ún ter hand staffygfið 21. ún ter hand staffygfið
	2 G 8		663
		L _	돌물물
	320		* * *
.	202	ili se ll'uni 3)	20 X 2
	556	Ŷ	1,1,1,1,1
1		÷	5 A 11

J. Lonnott 24 par plug of test humon flue paths and a 234 sucker 32 (Jr. pluce of 42003).

Justicul, Just, program TOV (in product J3 on the cost lateral,

Pletchy club the first time grain (RN) is current by observing separations at the club PL Dyagin (N). Geo Stable 2.

Tepleza the RSL

Refilme the RM.

Instatt 315 in socket 32 on test forth (do not in-such mything in protect 31 and 35,

		Nucle 2. If series writes of the critic is 177 VAATSA or bolok, perform the following:	 phacement test program U.H from test hours subject.3. 	 Take out 25 bord and install the signal re- propert 82 in (55, andre: 2 in place of £23, 6)
ox .	Té test programativ edithits incorrect «Lonture(s., 10- plicte the 200.			
		aç u unit kirih UCCAO er belov. Altı requert or Tus uni TUS	a tuch, in est bound. are given	

We is a what the Erstearting of each it maker 2000/CM each of significant wells a prove significant and its formed and prove the scalar is under the Erroral significant and the fields E.

There instrument unit then both on to reset US pro-grou to tos initial obliese three. Check adjusticates with respect to lost pure III through W ne the next bound. Justati tika tese barat is plays of A33 borry.

Teks our ACX board and disconer: "AULS from suriet TE (ree Kine T).

Model 4262A

315871.208

. . ..`

8-35 Figure 8-19 Digital Section Troubleshooting Procedures. Proc Diagram A Prov Diagram B SEE INSIDE

Section VIII Ingure 8-19

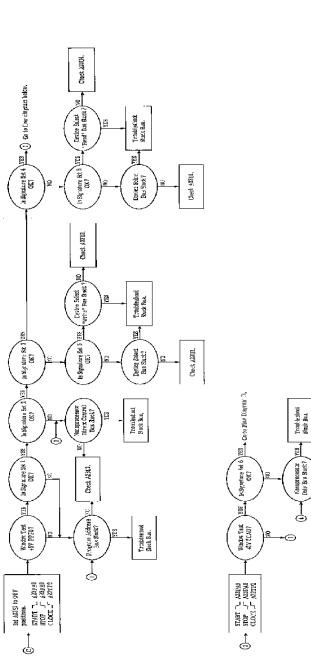
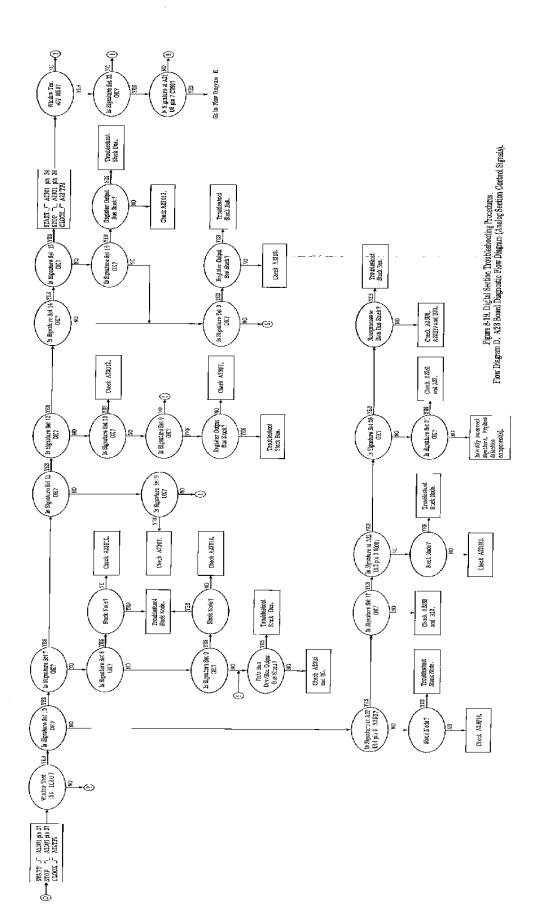



Figure 8-19. Digital Section Troubleshooting Procedures. Filow Diagram C. A23 Board Diagram. (Nanoprocessor and Derice Select Decoder)

Check A2301.

8-37

Model 4262A

8.37

8°-3

Digital Section Troubleshooting Procedures Flow Diagram C gee maide

Section VIII Figure 8-19

-

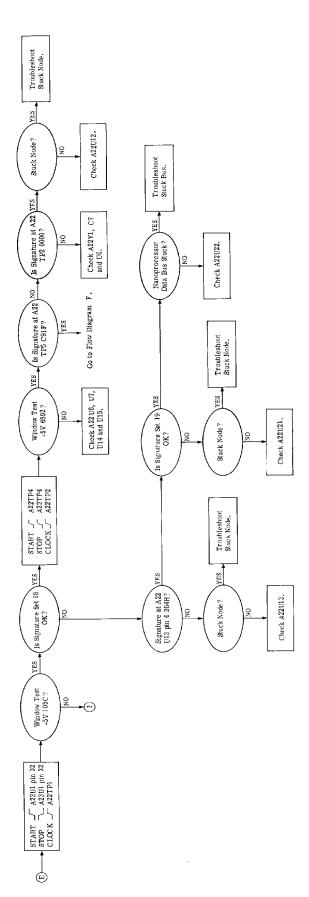
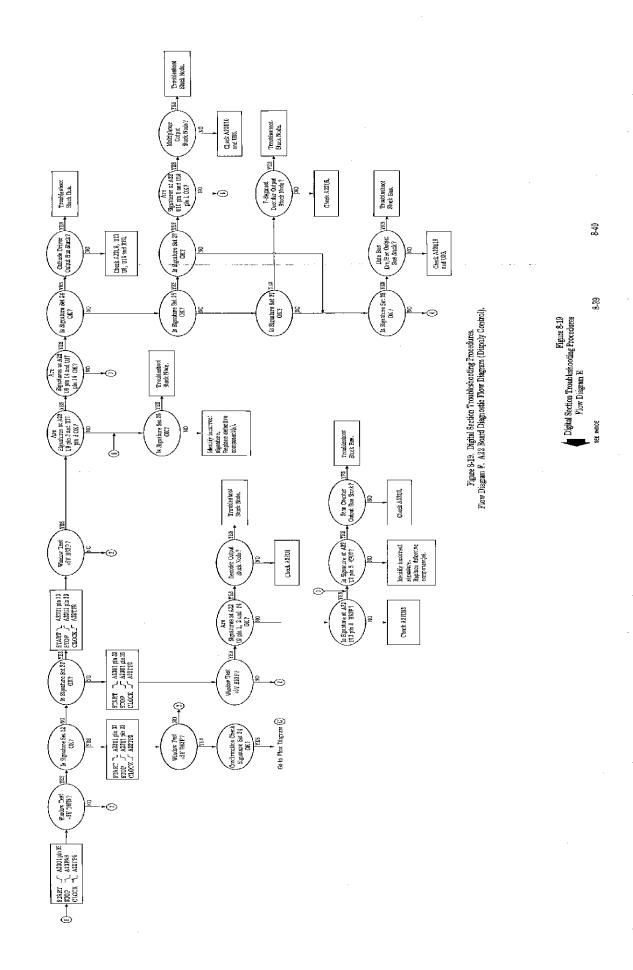
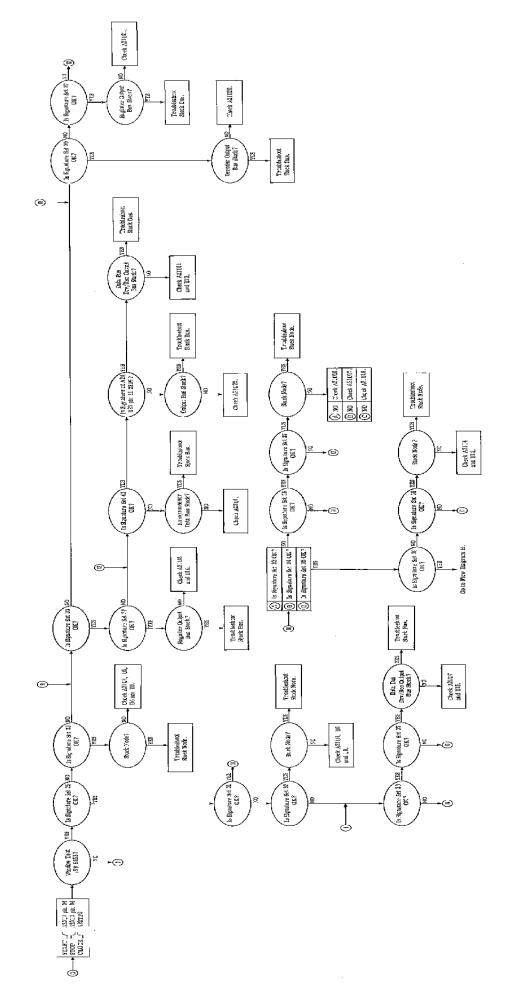




Figure 8-19. Digital Section Troubleshooting Procedures. Flow Diagram E. A22 Board Diagnostic Flow Diagram (Clock and RAM).

•

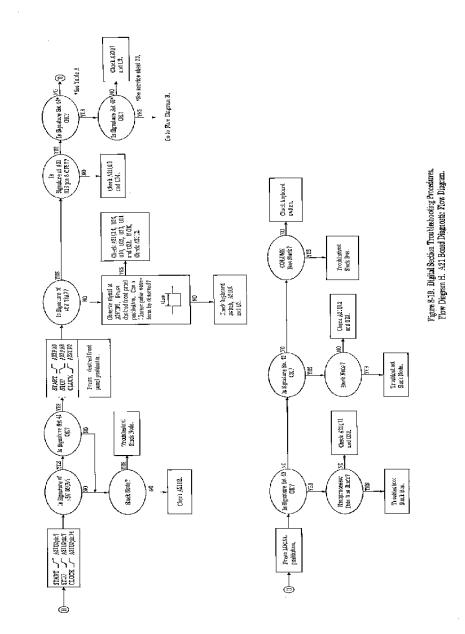

8-41

Figure 5-19. Digital Section Troubleshooting Procedures. New Diagram G. A21. Board Diagnostic Flow Diagram.

Model 4262A

Section VIII Figure 8-19

	F	Table A. K	Keyboard Switch Test Signature.	tch Test Sig	gature.			
Key ^{4:}	E22(3)E0	022(G)DI	022(10)D2	U22(12)D3	C11(3)D4	U11(3)D4 011(8)D5	90(01)119	10(11)DT
LOCAL	1000	3106	(1)/9H	4648	3四4	200 F	HAER	2FH7
SELF YEST	1000	3506	H64U	4648	51.68	PPCF	6859	THAI.
CMD AUTO	1000	3508	H640	4548	7166	209F	IAUS	2.FET
TEA OWO	1000	DCEB	BHAU	4549	3764	209F	HIEI	2.DE7
CMD SER	1000	UCEB	1164U	4548	3 16 8	PPCF	EHE:	2.FE7
FUNC L	1000	UCEB	H840	4548	5166	209£	LAUG	2 TH T
FUNC C	1000	BOCE	1800	もも	5764	209.7	HIF	2TH7
FUNC R	0007	90.00	1991	4648	1466	PPCF	EHE	2 FH7
FUNCALCE	1000	15 DB	1861	杨朝	9974	$209 \mathrm{F}$	EAUE	2.FH7
LCR RNG AUTO	1000	UCHB	180U	4648	5764	2007	-EEFE	2.FH7
LCR RNG MANUAL	5000	UCEB	166U	54	9B74	TPUT	旧田	2 FH7
LCR ING DOWN	1000	UCEB	1891	4.48	8074	209F	HTV:	2.FH7
LCR RNG UP	1000	3508	1164U	80.68	5754	200F	印码	2 FH7
LOSS 11	700D	80 SK	E64U	8C8	9874	PPCF	6KFE	2 IYH7
C 350 J	100D	35UB	1196U	808	1004	209F	UAUP	2 FH7
DQ RNC AUTO	4200	UCBB	0798 '	80.8	5754	2097	ENDE	2.FH7
DO RNG MANUAL	1001	UCH8	EBEU	8068	1465	PPCF	田田	LE42
DQ RNG STEP	1001	UCER	D7911	80.68	5974	200F	1,109	2EH
TEST SIG LOW LEVEL	T00D	3203	1860	BC6B	5754	200F	H4H0	2 FH
TEST SIG 120E2	1000	3508	1961	808	6974	PICT	ETTER 1	2 J H
8	7000	3603	1981	BC61	199	309F	1AU0	1 2.7H7
TEST SIG 10kBz	7000	10HB	1960	80.68	5754	1002	開計	27H)
TRIC INT	7000	LCH	1961	8068	¥1.65	PPCP	ELE ELE	2.THT
TRIG EXT	1007	LCHS	1960	808	11.6B	200F	1,409	23H)
TRIG HOLD/MAN'JAL	1000	3608	116410	4648	5074	3602	H	PUU
	:							
Signatura Analyzor Soltings:	or Sottings:			•				
START ALJPAL		*	 Pepressing the keys fished will result in the signatures defined in Table A. 	the keys his lefinæd in T:	ted will ro able A.	sult 17 the		
54	ال _ا							
Window Test (+5V): 72A [†]	5V): 72A7							
		_						

8-42

6-41

BEE INSIDE

Figure 8-19 Digial Section Travibleshooting Procedures Flow Diagram G

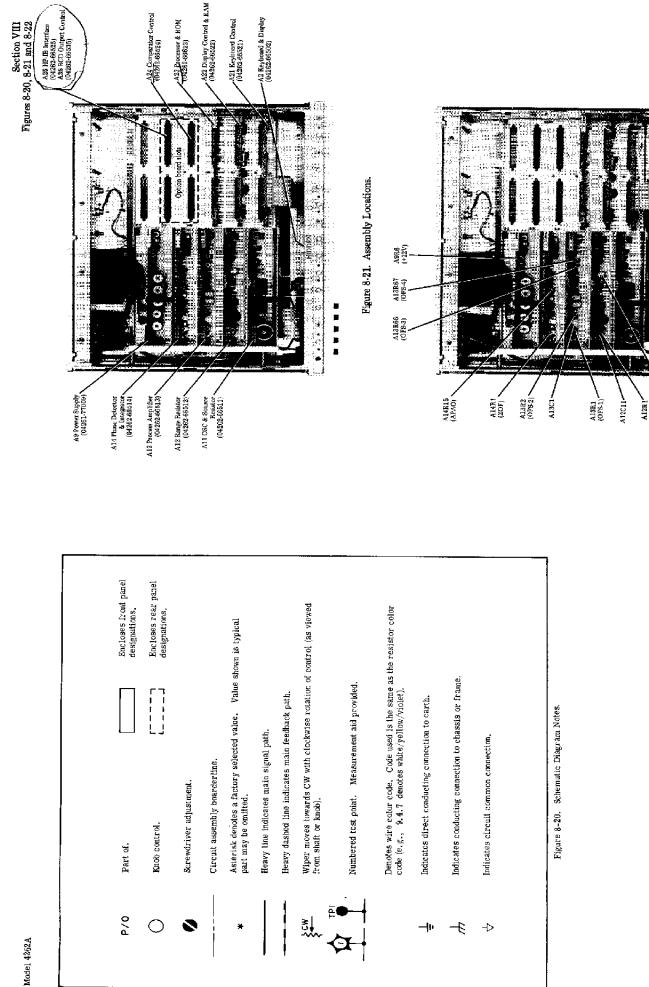


Figure 8-22. Adjustment Locations.

A12C8

4

8-43

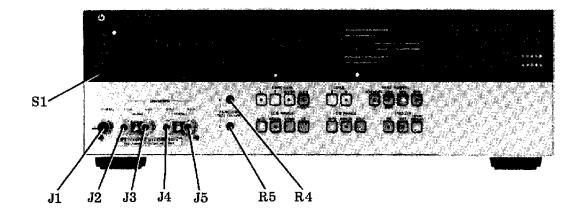


Figure 8-23. Front Panel Component Locations.

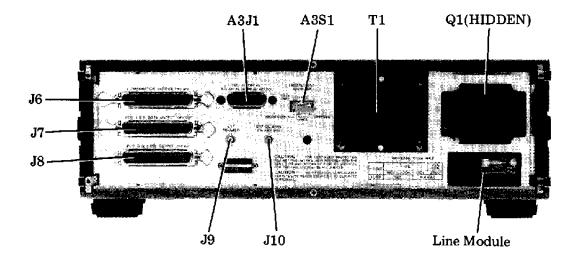
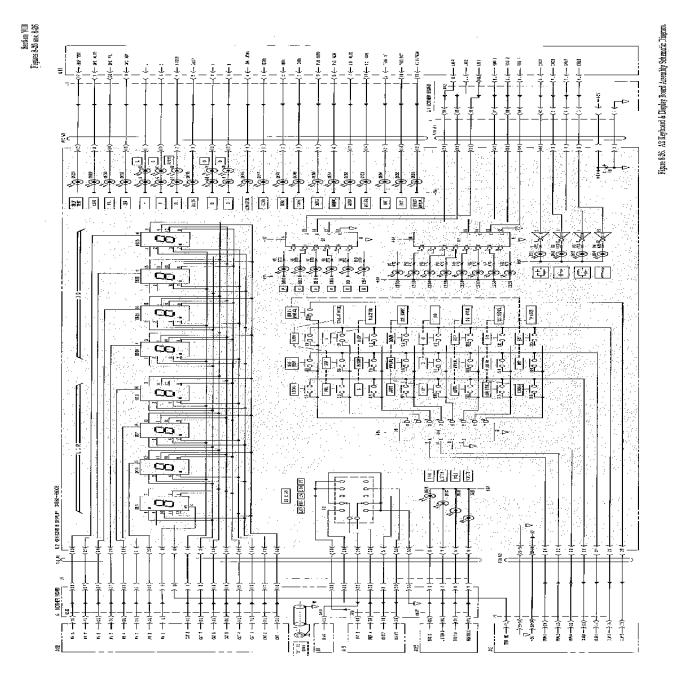
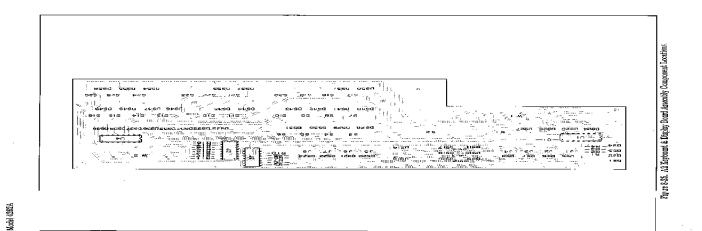
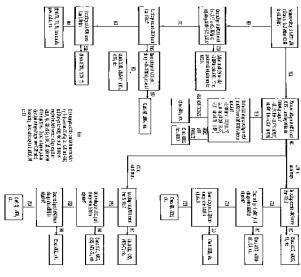
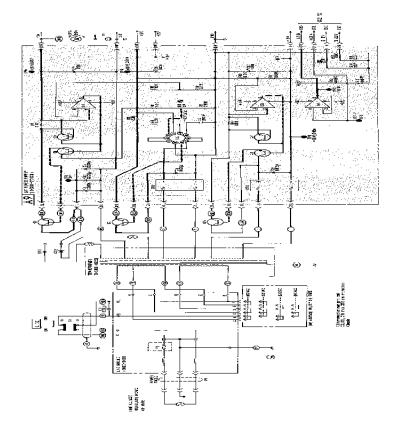
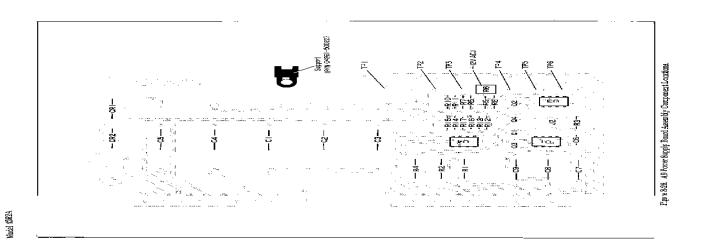





Figure 8-24. Rear Panel Component Locations.



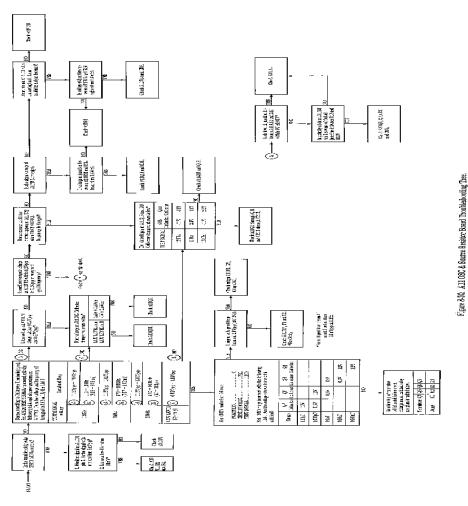


SEE MADE 24 24

A9 Booni Trachleshooring Tree Under Fold

Ngure 8:29. A9 Power Supply Boerd Ascently Schenests Dispran.

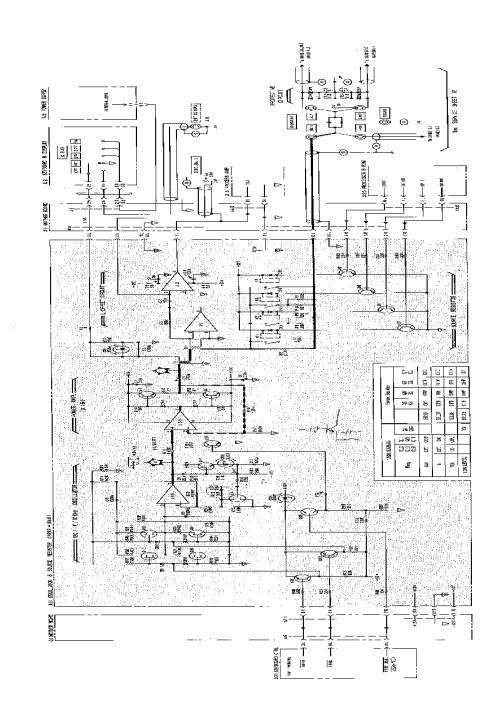
A11 BOARD CIRCUIT DESCRIPTION.

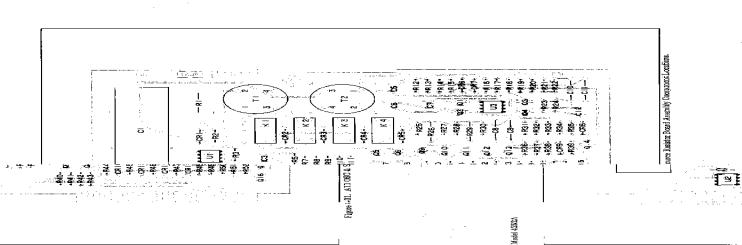

The Wax indiga coellistin frequency is darined from the evolution: 11/16/7/EAILCOSCI), stochical insistances flat acid the areas and the none matching to the solution of a with evolution and the none the near fueld. The edolography of the witheless for the coellistic frequency on the near the strables to the available of perturbatives, control obtained with the resolution of the individual for the late of the operative frequency are stranged to the late of the operative frequency are though the elevent (4 and 9/4 operative frequency are though the obtained of the stranges of solution of the individual of the operative of the isolate to the frequencies and apply orbigas as relieves: 1 the exclusion of the the obtained of the isolate to the solution of the the other of the isolate to the solution of the isolate of the perturbation. The thild here along and the isolate of the isolate of the solution of the isolate the isolate of the isolate

1 2 4 5 7 8	HOUTE HOUTE HOUTE HOUTE HOUTE HOUTE HOUTE HOUTE	100.001 H00.001 H00.001 H00.001 H00.001 H0.0001 H0.0001	10.00µH 100.0kH 10000kH 10.00hH 100.0mH 100.0mH	1000 11:0 10k0 130kg	100 1000 1000	2 10.00mF 100.0cF 100.5cF 10.00mF 100.0mF 1300.0cF 10.05mF	E 10001F 10.001.F 100.001 100001F, 10.004.F 100.01.F	10.00pT 100.0pT 1000pF 10.00nF 100.0pF 100.0pF 10.00pF 102.0pF	10kg 1kg 1000 10kg	100LG 10LG 11LG 143 10R	1 16.0013 100.0020 100.00213 100.0020 10.00502	1303 11£3 10kB 100kB	
-		100.01		100		1000F	100.0pF	10,00m	100k0		0), 114Ea/ 114Ea/		
and i	120Hz	1kHz	1 DkHz	SER	FARA	130Hz	1kH2	10kBz	PARA) SER	1200 11/HZZ/ 101/Hz	333	1.0
Punction	1 1			D, D,	in line	;			Rt Ro		Full- scale	Ba Ba	

147

먨


AS Rever Supply AS SERVICE SHERT 9 set 1300



A11 Board Treubleahorting Tree Under Fold

ż

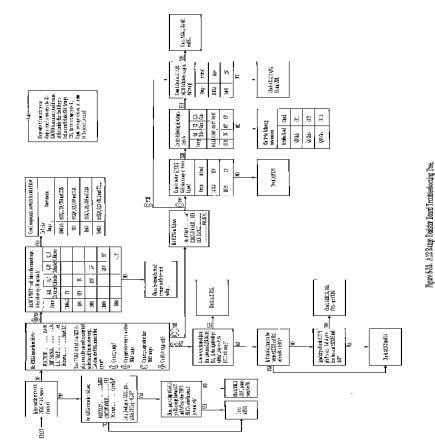
. .-

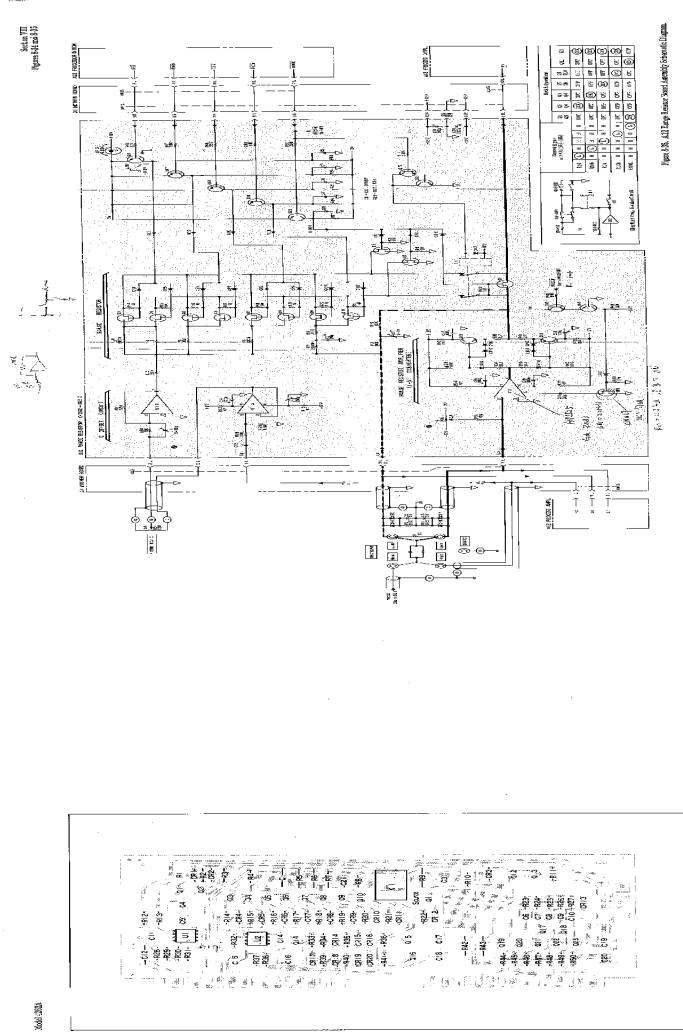
햜

Pigure 8-22. A 11 OSO: & Source Resistor Board Assembly Schematic Diagram.

A12 BOARD CIRCUIT DESCRIPTION.

can on K. It is reserved, the active contexts of year. The oper conducts of K. J. also intervey the arrow context flowing through line story equacitance in the mape recision citarit. The distribution of C3) and this case is the context of used (R4), R(10) and C3) and this case is the context of the three the arrow consentions of the ring or cludes to pround. Table A below sions the self-instance of relaced mage residue to 4052A TUNTION, CIACUT MODE and BANGE rettone. Hange schedar sericidaes (scher antichae) 68 trough Q10 and associated withhes (Q1, Q2, Q1) and both Q2 and Q4 varm on to sense the voltrage damp and in simultaneously moute the DUT current fore through screp-resistor 184 (102). A4 and Q4 compose a feedback ocy in the Range Riession complication to solvicted range. The enso Ki, provide an approvirate full scale range resizance which will provide an approvirate full scale range (see table with range resistances are always placed in parallel with the 100hB range resistance alone is selected by causing Q11 to regardless of the resistance of the range selection switch ON, Q11: OFF). The selectable 103, 1000, 1kg and 16k9. pormanent: 100kg mage resistance (129 plus 1310). The circuit sebercatic). Pero svitetice consumently act to enable detection of an exact voltage drop across the cange ression birough which the range reaktor current flows. For example voltage drop across R4 is routed Encugia Switch Q3 (K1).

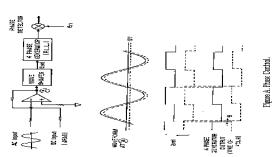

						_	End					-		
	80						1000µF 10.00mF	1000	100.0µ7		100	10,00145		1000
	E	1000H	100,0H	10,00H		101:02	1000 -	1004	10.001		1000	10001:2		101:03
Selections	ę	HD:001	10.0H	1000mH		21rg	10.0,8				1 L2	UT.O. 307.		162
ietor (B.3)	5	10,01	100CanH	100.0mH	100LC	1002	1000AF 10.00µF 100.0µE	IDOUnF	100.0h	100	101.0	CHODCOT 23:00:01 22:00:07: 03:00:01	1001.0	1000
iource Res	-94	100,01 Ha0001	100.0mH	HWD001 HW0001 HW0001	101:0	100	1000rF	100.0nF 1000nF 10.00,F	10.00hF [100.0hF 1000hF	1000	100lcQ	10001	10169	102
Table A. Bange Reistor (Da) and Source Belistor (D3) Selections.	ł	100.0mH	200.0 Hard 10000H 100.00mH 100.0mH		160		100.0nĒ			11:13		100,001	$1k_0$	
ge Resistor	63	Hurd 10,001 Hurd 100,011	1000µH	10:00 HI 100:001 HI0001	1002		1000pF 10.0hF 100.0hE	106.0pF 1000pT 10.00nF	10.00yF 100.0pf 1000bF	840.		10,00	1000	
ide A. Ban	1	1000 H	100.0 U	10.00µH	100			10C.0pT	10.00pF	1001:2		1000m,D	110	
Tai	Range	120Hz	1LEA2	10kHz	SER	PARA	120Hz	11Hz	101HL	PARA	SER	120¦ 1LHE¦ 10LHE	NEC.	FARA
	Function				ים ים מים		1	j j		Po Po	10ft (y 1	Fuil- scale	Rh. Pr	
- 1	/ 2			Л					ö			ei H		


67-9

ŝ

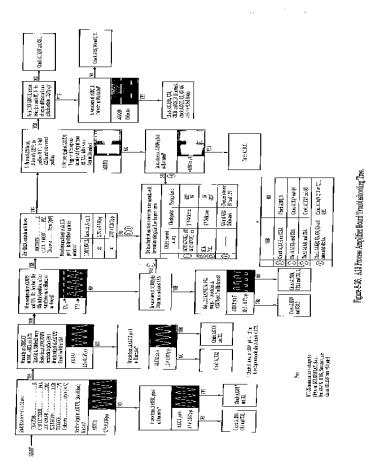
ATT OSC & Source Resistor SHERT 11 36E MEIDE

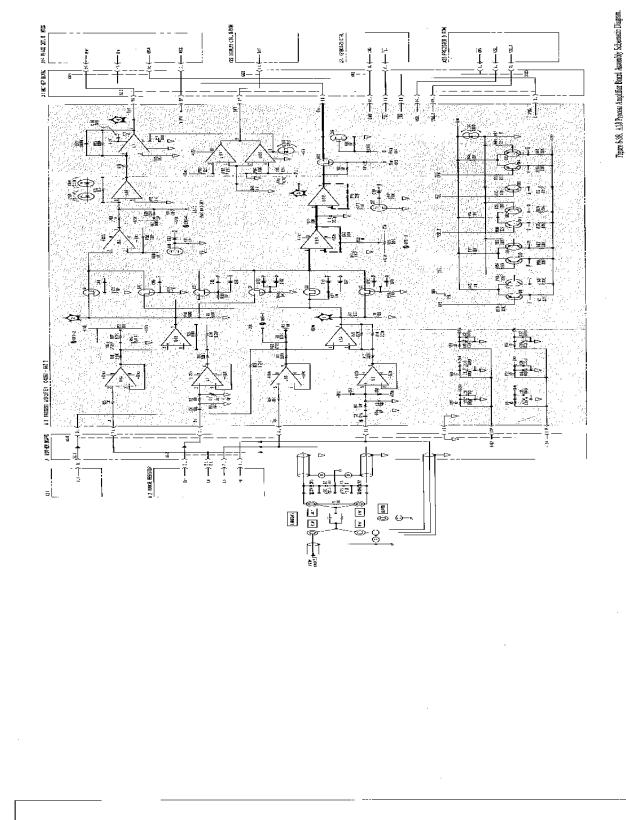
| A12 Board Troubleshooting Tree | Under Pold



651

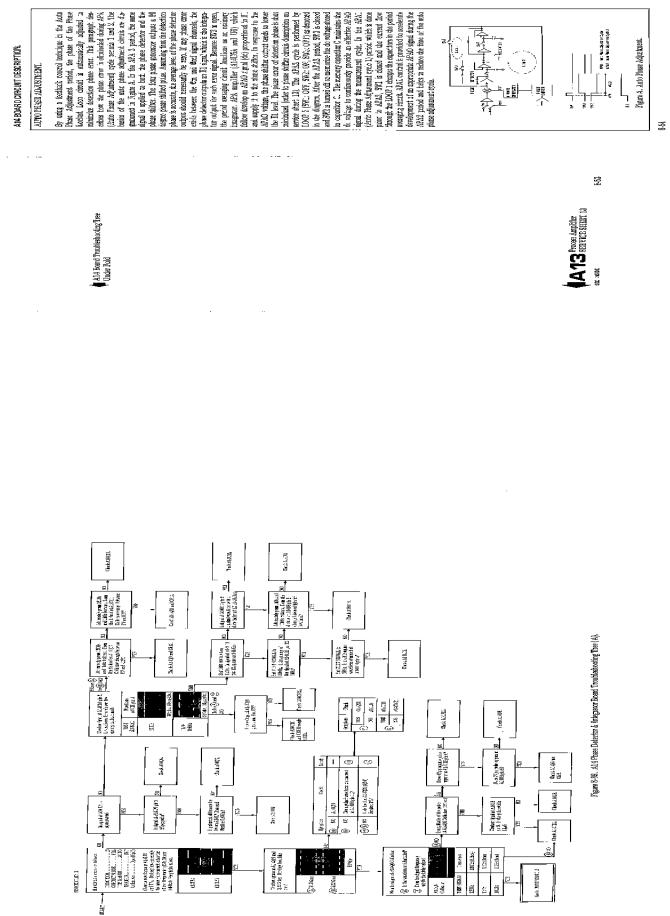
Figure 8-34. ALZ Range Resistor Hoard Assembly Component Liceations.


Output) itimal, added to the Gref algorid at the input stage of the Phase Shiftst UGB causes a change in the ptase of the Gref algorit. This phase Brase Shifter is added to file as input signal (Bruf) on the purpose of shifting the seven and an intuition of the purpose of shifting on the data want chaoge on the APAO voltage is determined by a comparison of the phase shifter output to the zero level. Chronit operating theory of the Phase Shifter This paragraph should be read along with the general description of the auto phase adjustment on service sheet 14). A DC input (APAO) to the level (as illustrated in Figure A). Additionally, the phase shirter reverses polarity of the signal. The phase shifter encryt is wave-encode to a scrien wwe which changes its rolarity every zine that the phase shifter ourput maveferch crosses the zero softed (narrowed or widened) as the share shifty) output is represented with respect to a tixed (0V) reispecce, Therefore, the phase of the PLL surjed used for yourse decodion will vary since the PLL circuit detects only the variance of an Ord levei. The waveforcus cirava in solid lines in Vigur A are those that exist when OV do input (APAO) i applied. Plaveforms in dothed lines are those that are present when a plus de input-(APAO) is applied When un ac signal with a sertain de (APAO) level i aputted, the duty factor of the Cro. signal i AUTO PHASE AD. USTMENT Phase Control). is given in the following paragraph. which sears the exact values drops across the DUT (\$1,1 and across range residue (B2). The choice of for 8-set and Em signals by Q1 through Q6 depends apon the PUIXCFION and CERCUF MODR settings. Stritcher Q1 and Q4 select the (as components of the measured another) from smong the Θ_x , $\Theta_x(10, \Theta_y$ and $\Theta_y(10 \text{ signals. The method of the selection, relative to the measure$ ment mode, is graphically illustrand in Figure 3-3 Finning Diagram. When the TSST SIGNAL intertion is set to IOW LEVEL, both Q16 and Q17 iactors of supplicient Libb and V3B are non-increased by 20 times. If the amplitude of U6B origins (Ban) exceeds 44.2% peak, the window which signals that an improper FUNCTION or turn on. To mointain the amplitudes of Graž and On signals the same as in tableg a measurement with a semicent leat signer level, the amplification sperate during the integrator null office sequence (refer to Page 6-56 for the null office! control details). An APAO (Auto Phase Adjustment The input circulary of the A13 baava is composed of impedance converses and differential amplifiers phase detector phase relationces (**C**ref). Iroto either differential emploien outputs us directed by the (3), (b and 06 sequentially when the 0m signal comparator US ourputs a SAT (securation) pube RANGE setting is being attempted for measuring the unknown device. Switches Q18 and Q19 Ex or Ey (representing R1 and E2, respectively CMS (Circuit Mode Selection) signal. Switches Q2 A13 BOARD CIRCUIT DESCRIPTION



5

A.1.3 Exercit Troubleshooting Tree Vinder Pold



Cold. 125. 71gure 8.37. A13 Process Amplifier Joerd Assembly Component Locations Englan CR2: Ş ÷. ខ័ て 留し ゴ C20 C19 2,8 H26 825-1 a ç 轚 52 헕 8 19101910 1

Mode: < 2024

Section VIII Figures 8-37 and 8-38

k L L

- 1000

6

1 E

Ŧ

뾑介

en konstationistation van 198 konstationistation

Pigure A. Auto Phese Adjustment.

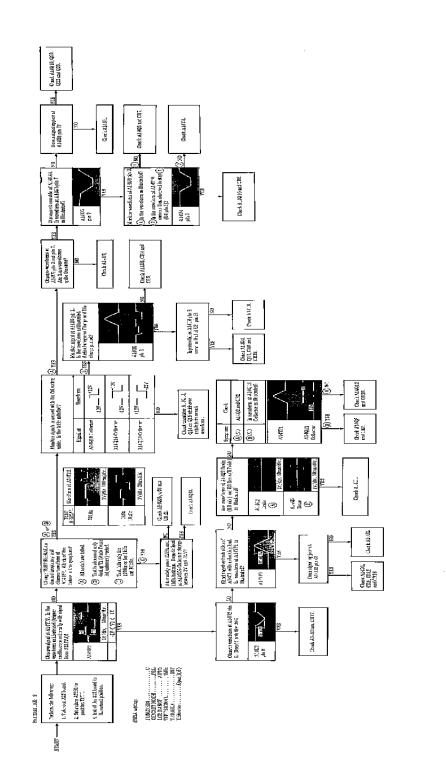
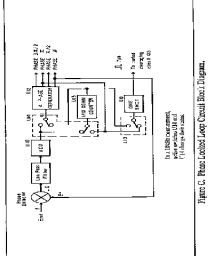
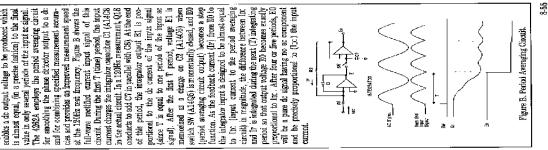



Figure 8-40. A14 Phase Detector & Integrator Roard Troubteshooting Tree (B).

generator input is always four times line Gref signal frequency. The 4f pulse train is univerted to four square wave signals, each having an exact phase difference of 0°, 90°, 150° and 270° with respect to the sampling switch Q5 at a rate of once in 20 periods of the period averaging circuit input (phrase output is inputted to gate circuitry U13. The U13 The periodic rate is sufficient for period averaging of the high frethe negative edge of the Cref signal. The U13 Gate circuitry periodically creates a short pulse which output is fied to the 1/10 down counter whose output is a 1msec (1kHz) pulse train which drives acomes 10kHz. The frequency of the four phase drives sampling switch (Q5) of the period averaging circuit in synchronism with the measurement signal In a 10kHz measurement, the four phase generator letector output) signal. quency input signal


INTEGRATOR NULL OFFSET CONTROL

for output offse; voltages present in the phase detector and the integrator stages are reduced to innce and advances charging to achieve a shorter will affast convrol pariod. The Integrator produces a dc output: which represents the accoundiated voltage across the charged capacitor. Thus, any offset voltages present are eliminated and one note thange of the offset voltages. The integrator output is stored in capacitor C1 to maintain its voltage voltage to the integrator is referenced to the During the offset null sequence period, the Amplizero at the integrator output. While the offset null is being performed, switches A13Q18 and Q19 Simultaneously, A14Q1 and Q2 turn or. Q2 provides the integrator with a lower input resis-Any incoming intercupt Em signal transfer to the Phase Detoctor during the measurement cycle. factor in the integrator output.

59

queury of the feedback signal 6f to the local phase detector (12D) 10 V in the outputs voltage of the LPD (connected : or at of by Low Pass Filter Qf act QS) directs : i:ie entillation of VOO so that the fifter-ence in both frequency and phase between the two signal. When the PLL control is off, the VCO oscillates at a mequency close to 40 times the freinput signals (Bref and Bf) to the LPD tends to sching, switch Q9 is turned off to change the oscil-lation frequency of the VCO to 40kHz. In a Achinique was incorporated to develop an input to estublishing the exact relationships between the quency of the input signal (Bref) to the Phase Shifter, It. the 120Hz measurement setting, the frequency of VCO output becomes 4.8kHz. A 1/10 output frequency to 120Hz. This becomes the fresecone minimum. Eventually, both the phase and Figure C shows the block diagram of the phase locked loop elecuit used to establish an accurate detection phase in the phase detector. The PLL the Four Phase Generator which satisfies the requirements of phase and frequency accuracies for four phase generator output and the measurement lown counter U15 and the Four Phase Generator [112] (a 1/4 down counter) count down the VCO frequency of the four phase generator outpur (one of four) is precisely the same as that of the Cref signal (120Hz). In a 1kHz measurement frequency manner similar to that for the 120Hz measurement,

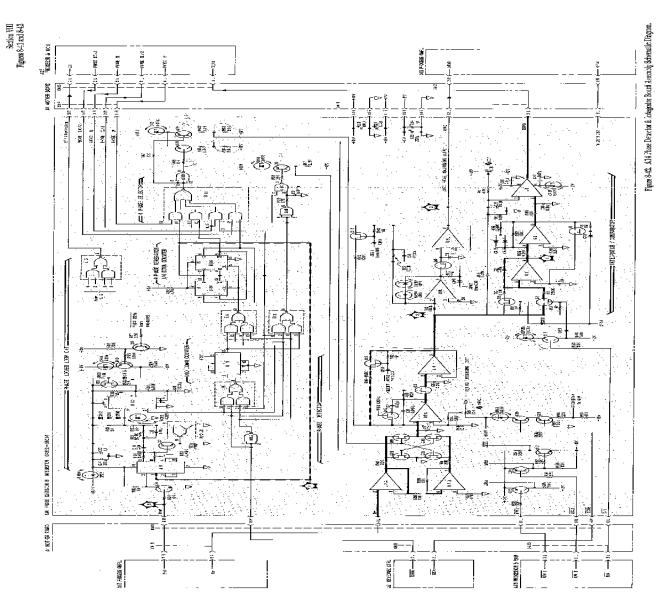
Thus, the frequency of the feedback signal ef

cuitry (U1.4) and bypasses the 1/10 down counter.

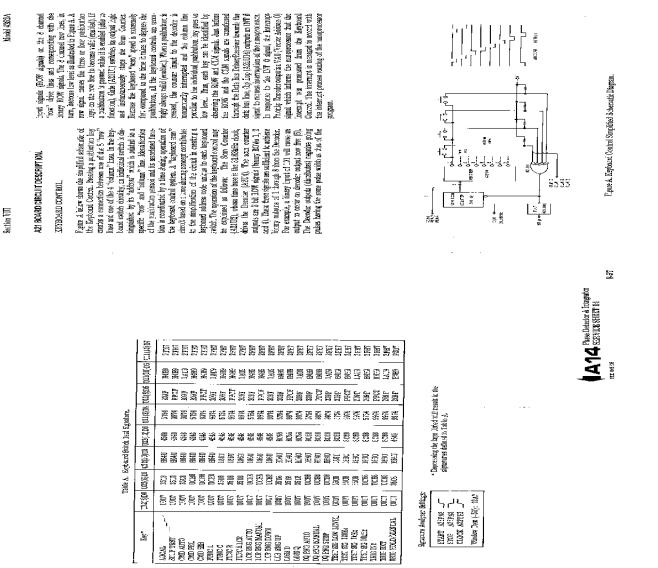
the four phase generator output is fixed to the exect frequency of Oref signal (1kHz). When measurement frequency is switched to 10kHz, the 40kHz VCO output passes through the gate cr-

Section VIII

414 BOARD CIRCUIT DESCRIPTION

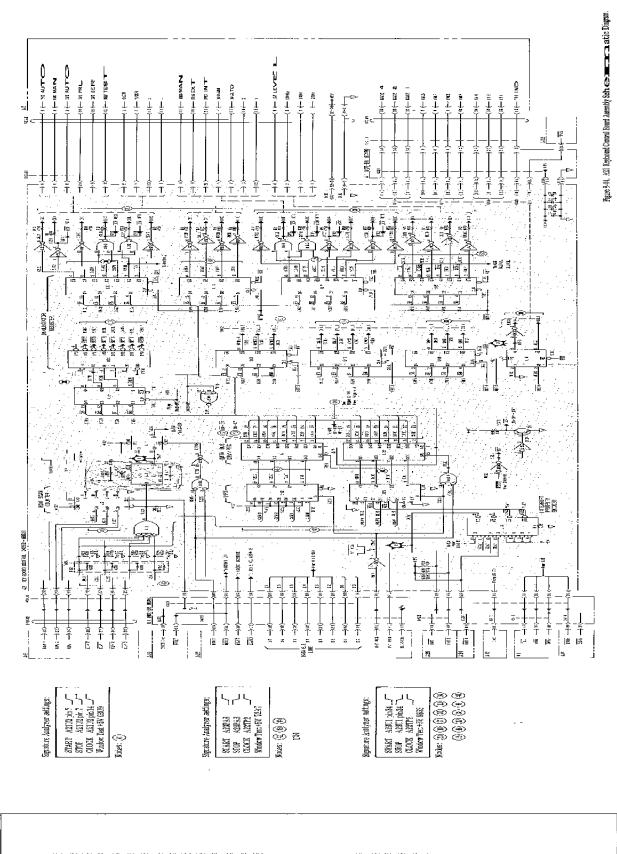

PHASE LOCKED LOOP (PLL) CIRCUIT A14 BOARD CIRCUIT DESCRIPTION

AND 4 PHASE GENERATOR.


PERIOD AVERAGING CIRCUIT.

A period averaging technique was adopted to get

egnal taving a large tipple component. Generally, a filtering elevalt has a long zamelent response time in converting a low frequency burst input signal to a pure de rectage. The period averaging textinique enables a de output vallege to the produces which pure do voltaga at high speeu from a rectified ac


Digne 8-4. A 14 Phase Detector & Lategrator Board Assembly Component Locations. -B29 1111-111-11 ł 100 ÷ 3 | 8| Ę. 18 **A** ļ 9 3 558 g 5 623 CR23

898

Section VIII

Section VIII Sangi

\$**\$\$\$\$**\$

1100

2000000

3

불형 ^학 형 육 융령령

ALC: NO

5

8

61.04

588 ÷

S

2

0.00

A

0.000.00

9

5

......

.≡.

=

ន្ម

4000

ŝ

ŋ

5

Figuri 849. A21 Keybert Control Brand Assembly Component Locations

Alba and a

ŝ

ട

00000

833

a states a

elli

3

100 - S

ģ

ື 🛛

¦ 방 방옥 부축

3

E.

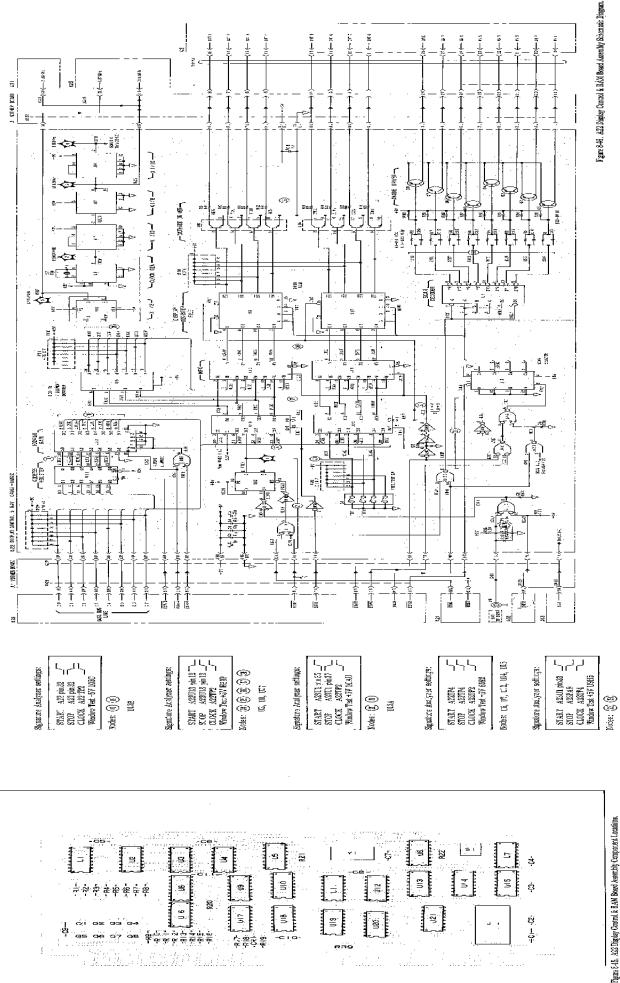
듚뜛혖륲귵슧

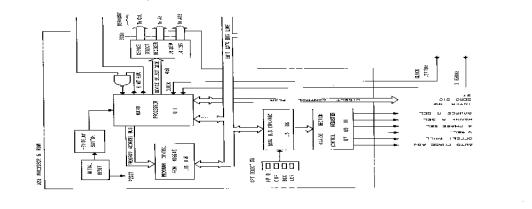
S

9

쁥븉쁥

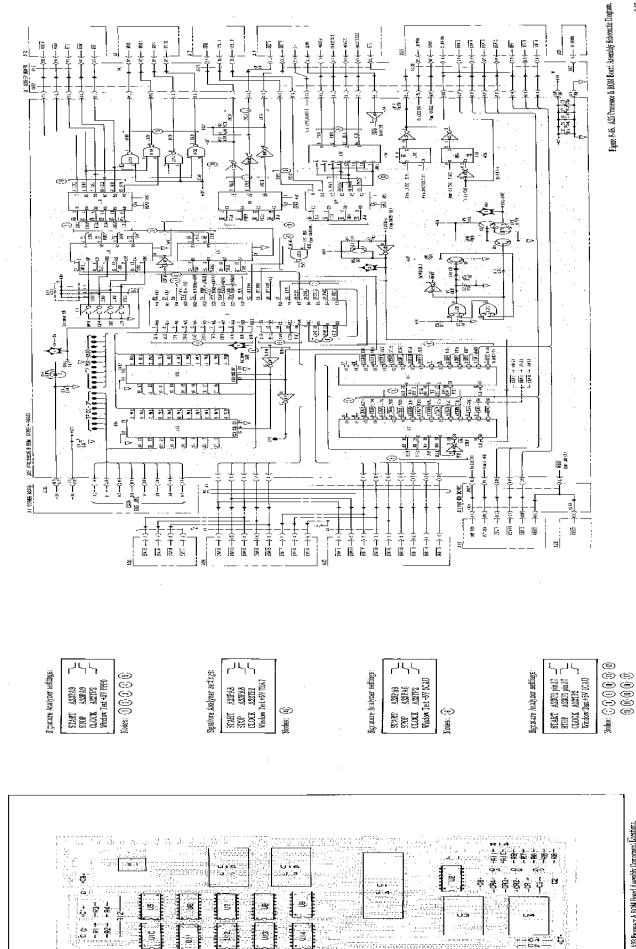
s


1011000


a contra ¥-

Hotel 42624

840 £2 **LAZA** Keplorad Control REPUISE SHERF: 21 REF INDE



A22 StepVCR 8H3T7 22 22 Marce 34 AVICR 8H3T7 22

5

Figure A., 245 Freeeser & ROM Block Discent.

2

đ

57

Ē

3

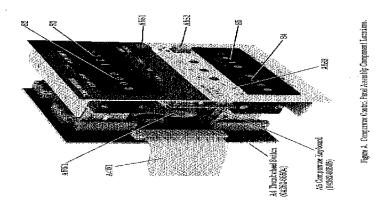
17 19 Û,

Ξ

тb

Modei 4262A

Section VIII Figure: 5-47 and 8-48

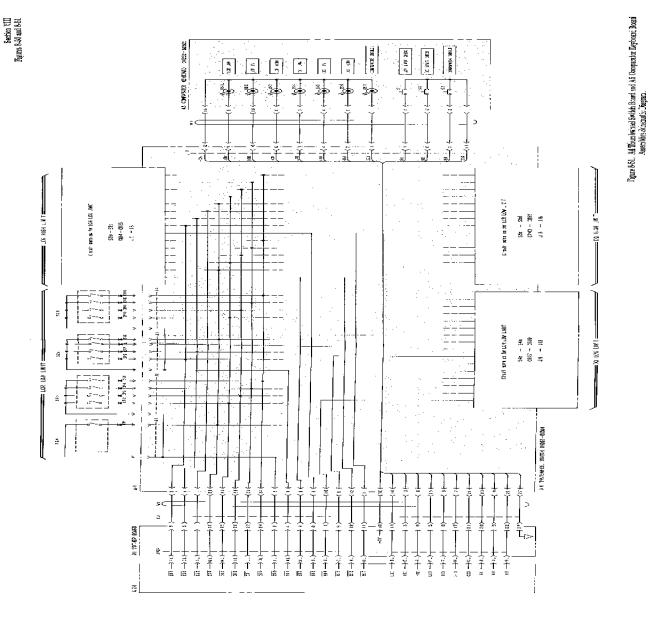

8 69 B

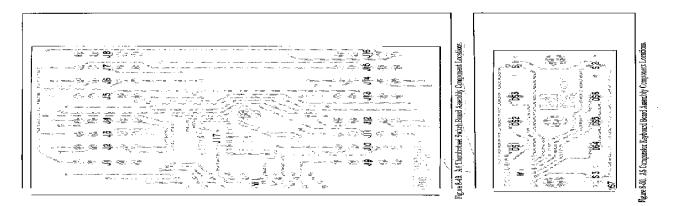
Ngure 8.47. A23 Processor & ROM Board Assembly Component Econtions.

Ľ,

是加加的复数运行的

8.3

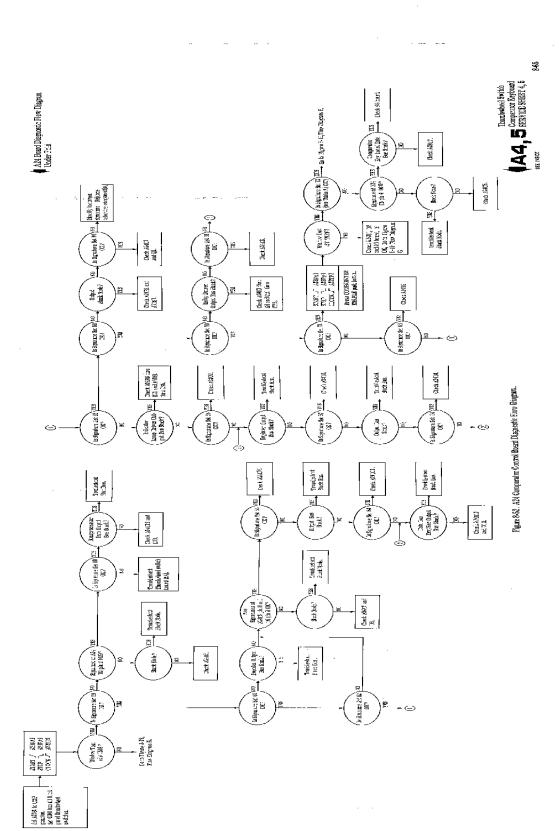

...

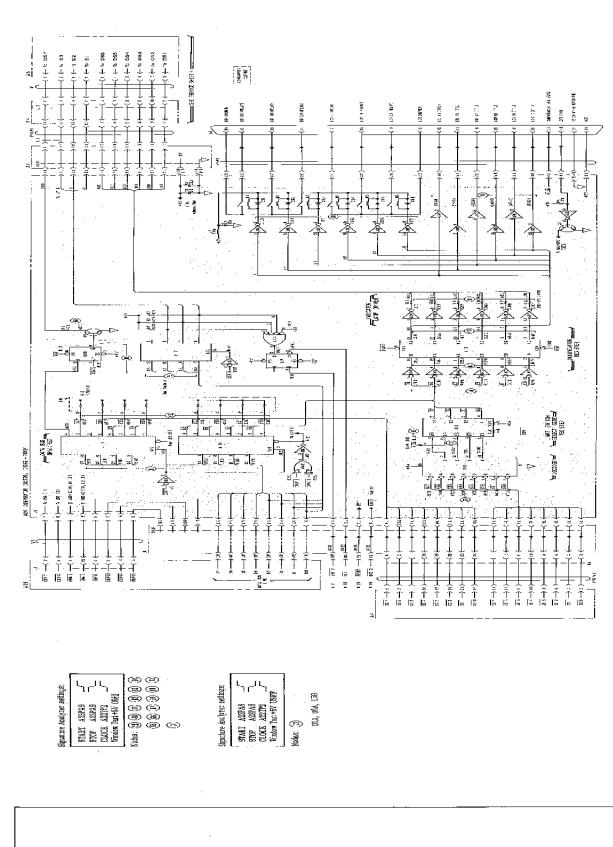

A23 SERVICE ALER 23 LA23 SERVICE ALER 23 LE MOT

19

.

.




Model 42624

st Signatures.	D1 U7(10; D2	8 .AT08	8 AF08	8 AP40
Table A. Comparator Keyboard Test Signatures	UT(3) D0 UT(5) D1	AF4C AF08	APIC APIS	APOC APOS
Table A. Conr	Keyloard Smitch DR	LCE LDAT CHK A	DQ LEALT CHK	COLP JAA

Xide To observe struktur kal algudura, condune prasiding COMRPARTION RIVABILE hullon for the torreturn of the justical articure cast. Then, grass preduttors in anoter with Table A Joine, Biggladuras for cash the obtinant criterin mole can be observed availe the spipreprinte buttoo 15 being gracited

s

6.4.5

승 후

8 80 F.K

10

3

lýia

벽

52

5

3

1

.

. WANNARSHERRER

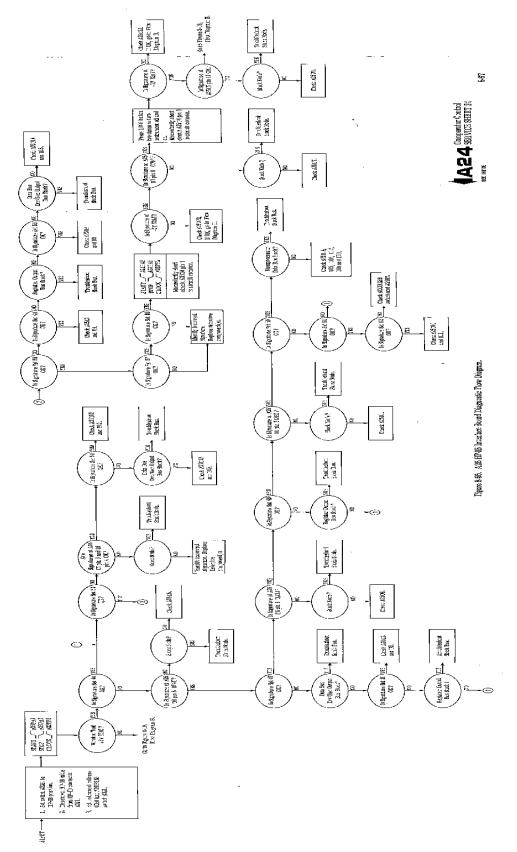
Pigure 8-54. AS: Comparator Control Board Assembly. Scherzisk Diagram.

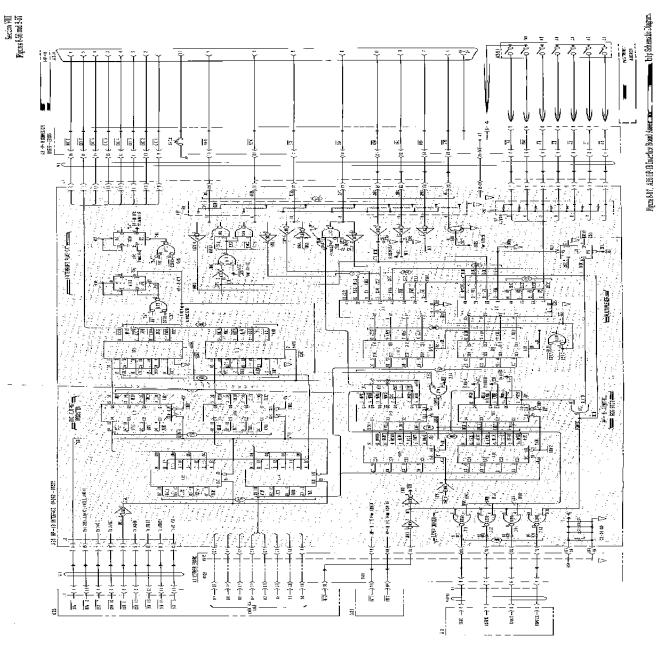
96

Eigme 8-53. A24 Comparisor Control Beard Assembly Component Lore 2015.

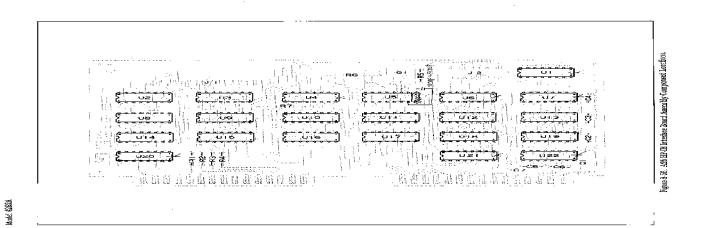
Model 42624

÷

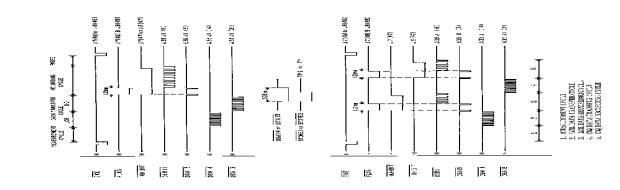

010 010 S

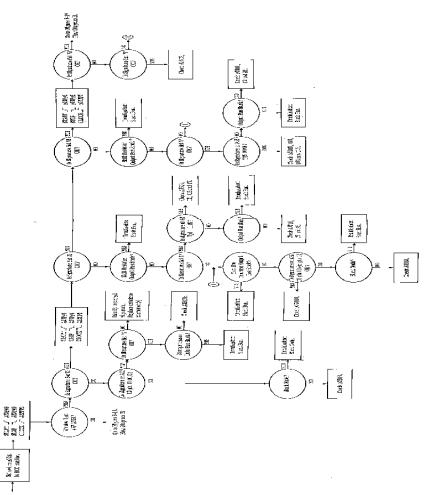

쁥댪쀼뗥

21


<u>e</u>2

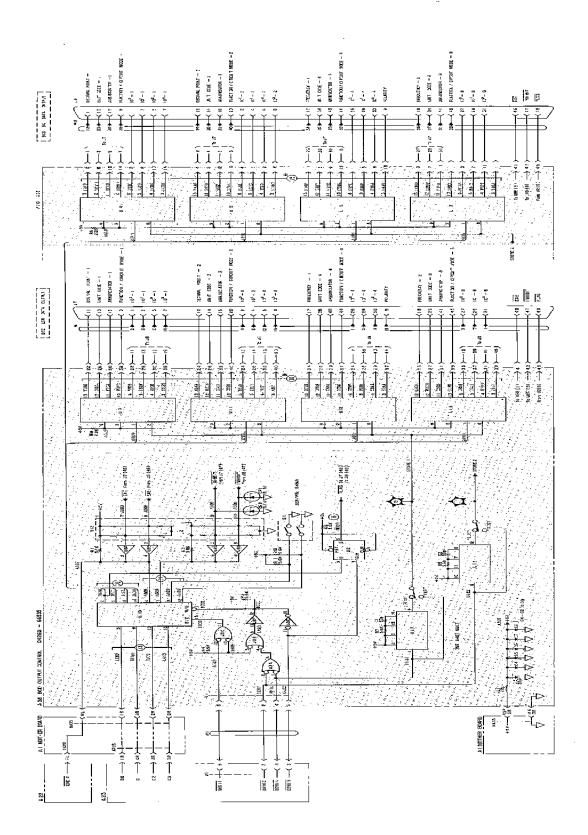
8ection VⅢ Figures 8-31 zrd 8-54 A 26 Board Diagnostic Flow Diagneen ••Ooder Pold




iii i

A25 (2.9) 2.30 ***** Pigure A. 300 Dack Ordput Timics Diletation.

5


i 33: Excel Diagnetic Plot Dragram Coder Pold

Pique Side. Ažš BCD Orbjur Conra. Brank Dirgnasie Plan Diagra...

Model 4262A

Section VIII Figures 8-59 and 8-60

Signature Analyzer settings:

ART OP	SLOCK A22TP2	11: 0 0 0 0 0 0
STA STO	CEO Mind	Nodes:

8-11

Figure 8-60. A35 BCD Output Control Board Assembly Schematic Diagram.

Supersedes:

None

HP 4262A LCR METER SERVICE KIT

C4262-87004

SIGNATURE ANALYSIS TEST ROM

(Serial Numbers 2022J03751 and above)

This service note describes how to use Service kit PN 04262-87004 for the HP 4262A digital section signature analysis troubleshooting.

The service kit can be used with HP 4262As which use A23 board PN 04262-66563. (The PN 04262-66563 is used in all HP 4262As serial Numbered 2022J03751 and above.) The service kit consists of a test ROM and this service note. Table 1 lists the parts supplied with the service kit and the recommended signature analyzer.

Table 1 Signature Analysis Test Equipment

Service Kil	Signature Analysis Test ROM (PN 04262-85011)
(PN 04262-87003)	Service Note (PN 04262-90103)
Signature Analyzer	HP 5004A, HP 5005A

Digital Section Test Procedure

- a. Turn the HP 4262A to OFF.
- b. Remove the A11, A12, A13, A14 and A23 boards.
- c. Remove the A23U15 (ROM) from the socket A23J2.
- d. Install the Test ROM (PN 04262-85011) to the A23J2.
- e. Reinstall the A23 board in its normal position. (A11, A12, A13 and A14 board must not be reinstalled, in performing the Digital Section Test.)
- t. Turn the HP 4262A ON.
- g. Perform the signature analysis referring to the Figure 8-12. Signature Analysis Guide of the HP 4262A operation and service manual.

Printed: Oct. 1988 Japan PN 04262-90103

FOR MORE INFORMATION CALL YOUR LOCAL HP SERVICE OFFICE Pt. E.B.S. (2011) 265-2000 • Midwest: (312) 255-2600 • Sourp (404) 265-1600 • West (213-242) 2000 or 4141 (68-2000 **CR WRITE**, Hewlett Person 1, 1900 Enforcedieto, 1140 Alto, California 24,03, IN EUROPE, CALL YOUR LOCAL HP SALES of SERVICE OFFICE OR WRITE, Hewlet Floward S.A., 7, 10, 50-30 Sourd Lan U.S. Fest de 26.0 (217) 277 Meyrin 1, Cherona, Swazer and IN JAPAN, Yoog av. Hewlett Packard Ltd., 27 (5) 305, 31 Chromos, Segmenata 7, 49, Kanagawa Prefect on Tup (172)

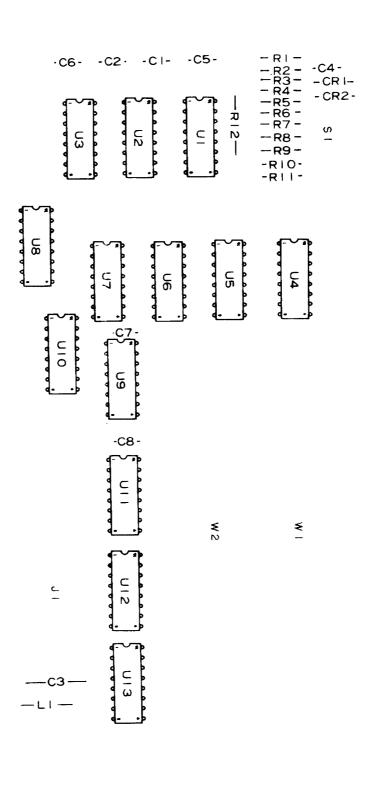


Figure 8-59. A35 BCD Output Control Board Assembly Component Locations.

. .

-

∿